◆ 緯度と経度

1 緯度・経度とは

緯度 (ℓ) と経度 (L) は、地球上の位置を表すためのものである。緯度は、赤道を 0° として、真子午線に沿って<u>北</u>又は<u>南</u>に 90° まで測って表す。経度は、本初子午線(又は グリニッチ子午線)を 0° として、赤道に沿って東又は西に 180° まで測って表す。

2 変緯と変経の計算

イ 変緯: 変緯 (D. 0.) とは、出発緯度 (01) と到着緯度 (02) の差をいう。 変緯の符 <u>号</u>は、到着緯度が出発緯度の北側にあるとき N 符を付け、南側にあるとき S 符を付ける。なお、地球表面における変緯 1'の真子午線の長さは1海里 (1,852メートル) である。

(公式) D. Q. = Q₁ ± Q₂ (ℓ_1 と ℓ_2 の符号が同名で差(\sim)、異名で和(+) となる。)

変経: 変経 (D. L.) とは、出発経度 (L_1) と到着経度 (L_2) の差をいう。 変経の符 号は、到着経度が出発経度の東側にあるとき E 符を付け、西側にあるとき W 符を付け る。なお、地球表面における変経 1' の赤道の長さは、1 海里 (1, 8 5 2 メートル) である。

(公式) D.L.= $L_1 \pm L_2$ (L_1 と L_2 の符号が同名で差(\sim)、異名で和(+) となる。 ただし、変経が 180° を超えるときは、 360° から差をとって、変経の符号を反転する。)

[記号の読み方]

 ℓ : ラット L: ロング D. ℓ .: ディーラット ℓ_1 : ラットワン ℓ_2 : ラットツー D. L.: ディーロング ℓ_1 : ロングワン ℓ_2 : ロングツー ℓ_2 : ロングツー ℓ_3 : マイナス(大から小を引く)

例題1 A 丸は、2°-22′N,160°-26′E の地点から 5°-15′N,158°-4 3′E の地点まで航走した。次の(1)と(2)を求めよ。

5 N

(解)

(1)
$$\ell_1$$
 2° -22.0′ N (2) L_1 160° -26.0′ E
 ℓ_2 5 -15.0 N (\sim L_2 158 -43.0 E (\sim D. ℓ . 2° -53.0′ N \leftarrow 答 Or 103.0′ W \leftarrow 答

例題2 B丸は、5°-15′N,90°-30′Wの地点から 3°-12′S,93°-48′ Wの地点まで航走した。次の(1)と(2)を求めよ。

5 N

(解)

(1)
$$\ell_1$$
 5° - 1 5. 0′ N
 (2) L_1
 $9 \ 0^{\circ}$ - 3 0. 0′ W

 ℓ_2
 $3 \ -1 \ 2. \ 0 \ S$ (+
 L_2
 $9 \ 3 \ -4 \ 8. \ 0 \ W$ (~

 D. ℓ .
 8° - 2 7. 0′ S
 D. L.
 3° - 1 8. 0′ W

 0r
 $5 \ 0 \ 7. \ 0'$ S
 \leftarrow
 \leftarrow

例題3 20°-18′N,178°-39′Eの地点から 変緯162′S、変経206′E となる地点の緯度、経度を求めよ。 5N

(解)

$$\ell_1$$
 20° - $18.0'$ N
 L_1
 178° - $39.0'$ E

 D. ℓ .
 2 - 42.0 S (\sim
 D. L.
 3 - 26.0 E (+

 ℓ_2
 17° - $36.0'$ N \checkmark
 4 E
 4 E

 ℓ
 ℓ

例題4 13°-37′S, 178°-51′W の地点から変緯205′N、変経214′W となる地点の緯度、経度を求めよ。 5N

(解)

例題5 速力14/ットの船が、 4° -12 $^{\prime}$ Nの地から真針路 180° で航走すると、何時間で赤道へ到達することができるか。

(解)

D.
$$\ell$$
. $4^{\circ} - 12'$ S or $252'$ S 航走時間 = $252 \div 14 = 18$ 時間 \longleftarrow 答

例題6 速力 15 ノットの船が、0°-15′S の地から真針路000°で航走すると、何時間で緯度2°-45′Nの地へ到達できるか。 5N

(解)

$$\ell_1$$
 0° -15′ S
 ℓ_2 2 -45 N (+
D. ℓ . 3° -00′ N
Or 180′ N

航走時間=180÷15=12時間 ← 答

例題7 速力 15 ノットの船が、178°-30′E の赤道上の地点から真針路090°で 35時間航走した。到着地の経度を求めよ。 5N

(解)

D. L. =
$$1.5 \times 3.5 = 5.2.5'$$
 E or $8^{\circ} - 4.5'$ E

L₁ $1.7.8^{\circ} - 3.0.0'$ E

D. L. $8.-4.5.0$ E (+

L₂ $1.8.7^{\circ} - 1.5.0'$ E

 $3.6.0^{\circ}$ (~

L₂ $1.7.2^{\circ} - 4.5.0'$ W \leftarrow 答

例題8 速力18ノットの船が、170° Wの赤道上の地点から真針路270°で40時間 航走した。到着地の経度を求めよ。 5 N

(解)

D. L. =
$$1.8 \times 4.0 = 7.2.0'$$
 W or 1.2° W L₁ $1.7.0^{\circ}$ W W D. L. 1.2 W (+ L₂ $1.8.2^{\circ}$ W 360° (~ L₂ $1.7.8^{\circ}$ E \leftarrow 答

例題9 速力15ノットの船が、155°-00′Eの赤道上の地点を発し、真針路270°で15時間航走して、それから真針路000°で10時間航走した。到着地の緯度、経度を求めよ。

(解)

D. L. = 1 5 × 1 5 = 2 2 5' W or 3° -4 5' W
D.
$$\ell$$
. = 1 5 × 1 0 = 1 5 0' N or 2° -3 0' N
$$\ell_1 \qquad 0^{\circ} -0 \ 0. \ 0' \qquad \qquad L_1 \qquad 1 \ 5 \ 5^{\circ} -0 \ 0. \ 0' \ E$$

$$\underline{D. \ell.} \qquad 2 \quad -3 \ 0. \ 0 \quad N \ (\sim \\ \ell_2 \qquad 2^{\circ} -3 \ 0. \ 0' \ N \ \checkmark$$

$$\underline{E} \qquad D. L. \qquad 3 \quad -4 \ 5. \ 0 \quad W \ (-) \qquad (\sim \\ \underline{L}_2 \qquad 1 \ 5 \ 1^{\circ} \quad -1 \ 5. \ 0' \ E \ \checkmark \qquad$$
答

[練習問題]

1 速力16ノットの船が、緯度7°-28′Nの地から真針路180°で航走すると、何時間で赤道に到達することが出来るか。 5N

答 28時間

2 40°-15′N,176°-35′Eの地点から変緯185′S、変経250′Eとなる地点の緯度、経度を求めよ。 5N

3 甲丸は、3°-55′N,174°-50′Eの地点から6°-10′S,176°-15′W の地点まで航走した。次の(1)及び(2)を求めよ。

5 N

答(1)605'S (2)535'E

4速力15ノットの船が、経度171°-20′Wの赤道上の地点から真針路270°で50時間航走した。到着地の経度を求めよ。5N

答 176°-10′E