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Abstract  

This paper gives the conclusive chapters in the Signal Space theory and its applications 

to communications described in two previous papers for JCSAT 2016 and 2017. In the 

first paper [1] a formulation of the signal space was given and its applications to 

interferences cancellation based on least-mean-square output (LMSO) method were 

analyzed. A problem of trivial zero output for excessive number of cancelling paths and 

other defects of the LMSO method were clarified based on the signal space analysis. An 

improved LMSE method was proposed and described in signal space concepts.  

In the second paper [2] the structure of the signal space was established based on 

Tangent Square Summation (TSS) theorem. The TSS theorem can be restated as 

Inverse SIRs summation theorem. The TSS theorem is effective to expand the signal 

space theory to include the thermal noise.  

In this paper a brief summary of the signal space theory is given but more emphasis is 

put in its applications. The improved LMSE method is based on regeneration of the 

wanted signal which is the very objective of communications. For digital 

communications the regeneration of the wanted signal replica with high fidelity can be 

made by demodulation. For analog modulations it is generally difficult as the 

wave-shape of the desired signal is not a pri.o.ri known at the receiver. An exception is 

frequency modulation (FM) which can regenerate the wanted signal with improved 

signal-to-noise ratio (SNR) at the receiver in good SNR conditions. 

In this paper a hard limiting (HL) is analyzed as a means to regenerate the wanted 

signal at the receiver with improved signal-to-interferences ratio (SIR). The SIR 

improvement of HL method is based on ―small signal suppression effect‖ universally 

observed in signal transmission systems [3]. 

Applications of the improved LMSE method to dual-polarization radio communication 

systems are analyzed based on the signal space theory. The method can be readily 

generalized to multiple-inputs-multiple-output (MIMO) systems with greater numbers 

of signals. The stability conditions of the control loops for MIMO systems are clarified. 
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1. Signals and Signal space 

 

1.1  Correlation of signals  

Inner Product or Correlation; 

Suppose we have two signals S1(t) and S2(t). Then we can define the inner product of 

those signals; 

   (S1(t), S2 (t) ) = [-1/2T,+1/2T]∫S1(t)・S2*(t) dt / T                   

where S2(t)* means the complex conjugate of S2(t) 

The above inner products are also called correlation of the signals S1(t) and S2(t).   

T is the time duration for the integral, or correlation measurement.  

  

Power of signals;  

The self-correlation of a signal S(t) is physically the power of the signal; 

   (S(t), S (t)) = ‖S‖^2         

where‖S‖is called the norm of the signal S(t).  

The power of the signal is normalized if the norm is calibrated to be‖S‖=1. 

 

Schwarz inequality;  

Suppose we have two signals X(t) and Y(t). Then the correlation of X(t), Y(t) meets the 

Schwarz inequality; 

  | (X, Y)| = or < ‖X‖・‖Y‖  

 

Angle Between Signals in Signal Space; 

The correlation or inner product between two signals X and Y can be expressed as 

follows; 

   (X, Y) / (‖X‖・‖Y‖) = cos (θ)・e^(jφ) 

where θ is the angle between vectors X and Y in the Signal Space and φ is the phase of 

the complex value (X,Y). 

The amplitude of the above formula;     

   cos (θ) = | (X, Y)∣ / (‖X‖.‖Y‖)   

is also called the likelihood of signals X and Y. 

For θ = 0, the signals are identical; X = Y, or totally correlated. 

For θ= π/2,  cos (θ) = ∣(X, Y)∣ / (‖X‖.‖Y‖) = 0, the signals X and Y are totally 

uncorrelated or mutually orthogonal in the Signal Space. 

 

 



1.2  Originality and Orthogonality 

Signals from separate sources are mutually original. The original signals are 

mutually uncorrelated because they are modulated by independent source signals and 

their carriers are mutually incoherent. Thermal noises are orthogonal to any other 

signals as they are random and incoherent in nature. 

The original signals are mutually orthogonal, but the converse is not true. Namely 

orthogonal signals are not necessarily original.  Suppose we have two signals X and Y; 

X = a.S1 + b.S2  

Y = c.S1 + d.S2  

where S1 and S2 are original signals with normalized amplitude. 

Then X and Y can be orthogonal; 

    (X,Y)= a.c* + b.d* = 0   

if the coefficients {a,b,c,d} meet the above equation.   

      

1.3   Signal Space 

Suppose we have signals Sd, S1, S2, ,,, Sm from different sources. Then they form a 

signal space with each signal giving the bases of the space. Without loss of generality, 

we can normalize their amplitude to 1. ‖Si‖= 1 for all i. 

The signal space is a vector space spanned by the original signals {Si ; i = 1,2,3,,,,m}. 

Any signal in the communication system is a combination of those signals originating 

from different sources. 

Suppose 

   X = x1・S1 + x2・S2 + ,,, xm・Sm 

   Y = y1・S1 + y2・S2 + ,,, ym・Sm 

Then 

   (X,Y) = x1・y1* + x2・y2* +,,,,, xm・ym* 

Thus the signals X and Y can be expressed as vectors in the signal space; 

   X = < x1, x2, x3, ,,,,, xm] 

   Y = < y1, y2, y3 ,,,,, ym ] 

where < x1, x2, x3, ,,,,, xm] is a representation of X as a row vector in the signal space.     

 

1.4   Signal Spaces for communications 

For communication we have a desired signal Sd to receive and regenerate at the 

receiver. There are also other signals S1,S2,,,,Sm generated by different sources that 

leak into the receive circuit causing interferences. The natures or even number m of the 

interferences are unknown at the receiver.   



The signal space for communications is formed as  

{Sd, Sin} = { {Sd}, {S1,S2,,,,Sm}} = {Sd, S1,S2,,,,Sm} 

Sin ={S1,S2,,,,Sm} is the subspace formed by the interferences signals. 

  

In communication systems we set a main path receiver that gives signal X and a 

number of auxiliary paths receivers that give signals Y1,Y2,,,Yn for interferences 

cancellation, gain enhancement, MIMO and other purposes. 

The main path and auxiliary paths signals are expressed as follows; 

  X = Sd     +  I1･S1 + I2・S2  +,,,,+ Im・Sm 

  Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm  

     (i = 1,2,,,,,n) 

where Sd and {Sj ; j = 1,2,,,m} are original signals. Without loss of generality we assume 

the norms of original signals are normalized: ‖S‖=1. 

The {Ij, Lij: i=1,2,,,n, j=1,2,,,,m} are transmission coefficients of the communication 

paths. 

In vector representation X and {Yi} are expressed as 

   X = < 1,  I1,  I2, ,,,,  Im] 

   Yi = < Di, Li1, Li2,,,,, Lim]      (i = 1,2,,,,,n   Lii =1)  

as vectors in the signal space {Sd, S1, S2, ,,,,, Sm}. 

   

Signal to Interferences power ratio (SIR) 

Suppose we have a single interference signal Si.  

Then we need to have only two receivers X and Y; 

  X = Sd + I.Si   =  < 1, I] 

  Y = D.Sd + Si  =  < D, 1] 

Let us denote Signal to Interferences power ratios (SIR) for X and Y by SIX and SIY 

respectively. Then 

  SIX =‖Sd‖^2 / ‖I.Si‖^2 = 1 /∣I∣^2 

  SIY =‖Si‖^2 / ‖D.Sd‖^2 = 1 /∣D∣^2 

On the other hand in the signal space {Sd, Si} representation 

   SIX = 1 /∣I∣^2 = 1 / tan^2(θxd)   

   SIY = 1 /∣D∣^2 = 1 / tan^2(θyi) 

Theθxd, θyi are respectively the angles between X and Sd and between Y and Si.  

The physical meaning of the above definitions will be clear in the following figure.   



 

 

1.5   Representative vector  

Suppose we have two interferences S1 and S2. Then we need two auxiliary paths 

signals Y1 and Y2; 

  Y1 = D1・Sd + S1  +  L12・S2 = < D1, 1, L12] 

  Y2 = D2・Sd + L21.S1 + S2     = < D2, L21, 1] 

The signals S1 and S2 forms a signal space {S1, S2} as a two dimensional plane as 

shown in the following figure. 

 

 

The angles θy1 and θy2 depicted in the figure have the following physical meanings; 

   tan^2(θyi) = ‖Di・Sd‖^2 /‖Yi- Di・Sd‖^2       (i = 1,2 ) 

The linear combination of Y1 and Y2 gives a vector Y on the plane spanned by Y1 and 

Y2.  Then tan^2(θy) for vector Y is defined in the same manner as for Y1 and Y2. 

Of the vector Y, there must be at least one vector that gives the maximum tan^2(θy). We 

name it the representative vector and denote it by Y(1,2).  
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The above concept can be generalized to cases with more vectors {Y1,Y2,,,, Yn} in  

signal space {Sd,S1,S2,,,,Sm} with greater dimensions.. 

The representative vector Y(1,2) represents the plane spanned by Y1 and Y2 

maximizing the square tangent value against the sub-plane; Sin = {S1,S2,S3,,,Sm}. 

In the same manner we can form the representative vector Y(1,2,3) representing the 

plane spanned by Y3 and Y(1,2). 

The procedure continues until we get the representative vector Y(1,2,3,,,n) that 

represents the plane spanned by Y1,Y2,,,Yn in the signal space {Sd,S1,S2,,,,Sm}. 

 

1.6   Tangent Square Summation theorem 

We will now try to get the square tangent value of the representative vector 

Y(1,2,,,n).  The auxiliary paths signals are 

Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm      (i = 1,2,,,,,n) 

 

Case of ideal auxiliary paths receivers; 

We first analyze an ideal case that the number of the auxiliary receivers is the same as 

the number of interferences signals; n = m, and each auxiliary path picks purely the 

targeted interference signal. 

    Yi = Di・Sd +Si     (i = 1,2,,,,,m) 

The subspace spanned by the auxiliary path signals is 

    Y =  [i=1,m]∑wi・Yi 

      =  [i=1,m]∑wi・Di).Sd  +   [i=1,m]∑wi・Si 

The tangent square of Y is given by 

    tan^2(θY) = ｜[i]∑wi・Di｜^2 / ( [i]∑｜wi｜^2 ) 

          (To be maximized by wi; i = 1,2,,,,m)    

 

By setting  

    ∂/∂wi* = 0   (i=1,2,,,,m) 

We get 

   Di*・( [i]∑｜wi｜^2 ) –  wi・( [i]∑wi・Di) = 0 

Or 

    wi / Di* = ( [i]∑｜wi｜^2 ) / ( [i]∑wi・Di)        ( i = 1,2,,,,m)  

They must be all equal to a common value, say K 

    wi / Di* = K   (i=1,2,,,,m) 

Which gives 

    tan^2(θY) =  [i=1,m]∑｜Di｜^2  = [i=1,m]∑ tan^2(θYi) 



Note 

    tan^2(θYi) = ‖Di・Sd‖^2 /‖Si‖^2   =｜Di｜^2 

The objective of the auxiliary paths receivers is to collect the interference signals, hence 

the leakage of the desired signal component Sd therein is undesired. Therefore the 

signal to interferences power ratio is inverse of the above tangent values. Thus the 

above tangent square summation theorem can be restated as inverse SIR summation 

problem. 

    1/SIY =  tan^2(θY) = [i=1,m]∑ tan^2(θYi) = [i=1,m]∑ 1/SIYi 

  

Cases in general; 

We have the following situation; 

Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm      (i = 1,2,,,,,n) 

In vector forms;  

    [Y> = [D>・Sd + [L][S> 

Where [Y>, [D>, [S> are column vectors the i-th elements of which are respectively Yi, 

Di, Si.  And [L] is the matrix whose (i,m) component is Lim. 

 

If [L] is regular, the above equation is applied with the inverse matrix [/L], 

    [Y’> = [/L]・[Y>    = [D’>・Sd + [S> 

Where   

     [/L]・[D> = [D’>   Or      [L]・[D’> = [D> 

The above situation is now the same as the special case which tells; 

    tan^2(θY’) =  [i=1,m]∑ ｜Di’^2   = [i=1,m]∑ tan^2(θYi’) 

The above operations are linear combinations of the auxiliary paths vectors, which do 

not alter the structure of the signal subspace {Yi‘} = {Yi}, hence 

    tan^2(θY) = tan^2(θY‘) 

  



2. Interferences Cancellation by LMSO method 

 

2.1   Least Mean Square Output method 

We have a main path circuit X to receive the desired signal Sd, but the output of X 

also have leakages of interferences signals S1,S2,,,,Sm coming from other sources.   

In order to cancel those interferences, we set a number of auxiliary paths receivers; 

Y1,Y2,,,Yn to get replicas of those interferences signals. 

 

The main path and auxiliary paths signals are combinations of those signals; 

    X = Sd     +  I1･S1 + I2・S2  +,,,,+ Im・Sm 

    Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm      (i = 1,2,,,,,n) 

The {Di, Ii, Lij: i=1,2,,,n, j=1,2,,,,m} are transmission coefficients of the communication 

paths. 

 

Least Mean Square Output Method (LMSO) 

In order to cancel the interference signals, we subtract a combination of the 

auxiliary paths signals with adaptive weights to get the compensated signal Z. 

    Z = X – [i=1,n]∑Wi・Yi 

where {Wi; I = 1,2,,,,n} are the adaptive weights to be controlled adaptively.     

 

Design philosophy of LMSO method 

The power of output signal Z is assumed to get minimal if the interferences signals 

are successfully cancelled.  

 

We control the weights Wi (I = 1,2,,,,n) to minimize‖Z‖^2. 

For the necessary condition we set the partial derivatives of ‖Z‖^2 by Wi* to zero. 

    ∂‖Z‖^2 /∂Wi* = 0 

Then we get; 

    (Z, Yi) = 0  ( i = 1,2,,,,n) 

That is, the output signal must be orthogonal to all the auxiliary paths signals. 

 

The weights {Wi} can be derived from the equation. 

     [k=1,n]∑(Yk, Yi)・Wk = (X, Yi)        (i = 1,2,,,,n) 

The equations can be expressed more simply; 

     [(Yk,Yi)]・[Wk> = [(X,Yi)>   (k, i = 1,2,,,, n) 

where [(Yk,Yi)] is an n x n matrix with (Yk,Yi) as its (i,k) elements and [Wk> a column 



(vertical) vector with Wk as the k-th element. 

Note the [(Yk,Yi)] is an Hermite matrix;   [(Yk,Yi)] = [(Yi,Yk)]* 

 

2.2.   Signal Space Analysis of LMSO methods 

As the output Z must be orthogonal to all auxiliary paths signals Y1,Y2,,,,Yn,  

Z must be orthogonal to the representative vector Y(1,2,,,,n) representing the subspace 

{Y1,Y2,,,Yn}.    

For simplicity let us denote Y = Y(1,2,,,,Yn), which has the following composition; 

Y = Dy.Sd + Sy     (Sy normalized;  ‖Sy‖=1) 

where Sy is a linear combination of the interferences signals S1,S2,,,,Sm. 

The output signal Z must be orthogonal to Y, hence must have the following 

composition; 

     Z = Sd + Iy.Sy  

and 

    (Z, Y) = Dy* + Iy=0 

The SIR for Z and Y are  

SIZ =‖Sd‖^2 / ‖Iy.Sy‖^2 = 1 /∣Iy∣^2 

    SIY =‖Sy‖^2 / ‖Dy.Sd‖^2 = 1 /∣Dy∣^2 

Hence  

    SIZ = SIY 

In angles representation; 

1/ tan^2(θzd) = 1 / tan^2(θyi)   

The orthogonality of Z and Y is depicted in the following figure. 

 

 

  

 

 

 

Iy.Sy

１１ Sd 
Z 

Y 

θyi Dy.Sd 

Sy 

θzd 



2.3   Problems of LMSO methods 

 

[1] Performances degradation 

The analysis above tells the SIR of the output Z is equal to that of representative 

vector Y of the auxiliary paths signals subspace regardless of that of the main path X. In 

most situations the SIR of the main path is higher thus the LMSO operations degrade 

rather than improve the SIR performances. 

 

[2] Trivial zero output problem 

The tangent square summation (TSS) theorem tells 

(1) The SIR of the auxiliary subspace monotonically degrades as the number of 

auxiliary path signals increases. 

(2) If the number of the auxiliary paths gets larger than the number of the 

interferences signals in the system, then the output of the interferences cancellation 

circuit must trivially be zero. 

(3) The mechanism of the problem is evident from the signal space theory. Controlled by  

LMSO method, the output Z must be orthogonal to all auxiliary path signals 

Y1.Y2,,,Yn in the signal space which is m-dimensional. If n > m, there can be no 

non-zero vector Z orthogonal to all auxiliary paths signals; more vectors than the 

dimension of the signal space. 

 

2.4.   Effects of thermal noise 

We now analyze effects of thermal noise for the LMSO operations. 

 

[1] Noise in Signal Space 

Thermal noise is non-coherent and orthogonal to any other signals or noises. In 

communication networks the noises are band-limited which gives the noises finite 

auto-correlation properties for finite time differences. In short, they act like a randomly 

modulated signal hence can be accommodated into the signal space theory. 

The representative vector Y is now modified to include thermal noise Ny; 

     Y = Dy.Sd + Sy + Ny     (Sy normalized;  ‖Sy‖=1) 

 

The TSS theorem tells the angle of Y against {Sy,Ny} does not change from that of Y-Ny 

against Sy. But the direction of the vector Y - Dy.Sd changes to Sy + Ny from Sy alone.  

The output Z in the signal space also changes since it must be now orthogonal to Y 

rather than Y – Ny. 



The above change is depicted in the following figure. 

    

 

The effect of thermal noise is now analyzed in equations. 

The receive signals now contain thermal noises.. 

   X = Sd     +  I1･S1 + I2・S2  +,,,,+ Im・Sm + Nx 

   Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm + Ni        (i = 1,2,,,,,n) 

The output Z  

Z = X - <Wi][Yi> 

is controlled to be orthogonal to all Yi (i = 1,2,,,,n) 

Then the adaptive weights must meet the following equation. 

     [(Yk,Yi)]・[Wk> = [(X,Yi)>   (k, i = 1,2,,,, n) 

Because the thermal noises Ni (i = x, 1,2,,,,n) are uncorrelated with any other signals or 

noises than themselves, the right hand side of the above equation [(X,Yi)> remain the 

same regardless of the noises.  

 

The coefficients [(Yk,Yi)] remain the same except for the diagonal components. 

In the case the noise power is the same for all auxiliary paths, 
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     ‖Ni‖^2=‖N‖^2   (i=1,2,,,n) 

Then the above equation changes to 

     { [(Yk‘,Yi‘)] + ‖N‖^2.[I] }・[Wk> = [(X,Yi‘)>   (k, i = 1,2,,,, n) 

and  

    [(Yk‘,Yi‘)]・[Wk‘> = [(X,Yi‘)>   (k, i = 1,2,,,, n) 

where [I] is an identity matrix and the primed (‗) symbols mean the parameters in the 

case of no thermal noises, i.e. Yi‘ = Yi - Ni.  

In the case of weak noise ‖N‖<< 1,  

[Wk > = (1-‖N‖^2) [Wk‘ > 

Then the output Z is  

    Z  =  X - <Wk‘][Yk‘>  +  (‖N‖^2).<Wk‘][Yk‘>  -  (1-‖N‖^2 ). <Wk‘][Nk> 

         (Noiseless case)       (control error by noise)      (additive noise) 

 

Stabilizer effects of thermal noise 

Thermal noises expands the dimension of the signal space from m+1 to m+1+n where m, 

n are respectively the number of original signals and that of auxiliary paths. As the 

dimension of the signal space gets greater than that of the auxiliary paths the trivial 

zero problem is avoided. 

 

 

 

  



3.    Improved LMSE method 

 

3.1   Gaussian Least Mean Square Error method 

The problems of LMSO method are caused by simply minimizing the power of the 

output of the interferences cancellation circuit.  

In order to solve the problems, the Gaussian least-mean-square-error method is 

now applied to the system. 

 

Principle of Gaussian LMSE method 

(1) Generate candidate replicas of the desired signal based on the receive data. 

(2) Calculate summation of the square errors which are differences between the desired 

signal replicas and the receive data 

(3) Adopt the replica that minimizes the summation of the square errors. 

  

3.2.   Interferences cancellation by LMSE method 

In order to get the errors of the desired signal, we need to regenerate a replica of 

the desired signal Sd at the receiver, which is the very objective of communication.  

In digital communications the desired signal can be regenerated at the receiver by 

demodulation with a good likelihood if the SIR and SNR are sufficiently high. Then the 

regenerated desired signal replica can be used to remove the desired signal component 

in the correlation measurement. This method is also called decision-feedback, has been 

widely used in digital communications. 

 

A simple analysis follows to show the mechanism of the improvement. The symbols <A], 

[B>, [C] respectively stand for the row vector, column vector and matrix.   

     X  =    Sd      + <I ]・[S> 

     [Y>  =  [D>・Sd  + [L]・[S> 

Then the canceller output is  

     Z =  X – <W]・[Y>   =  (1- <W・D> ) Sd  + ( <I)– < W・L] )・[S> 

 

From Z we regenerate a replica of the desired signal Sd‘ and subtract it from Z. 

Let     

Sd – Sd‘ = ε. Sd     (｜ε｜<< 1 ) 

Then we get 

     Z‘ = ( 1- <W・D>)εSd  + ( I – <W・L] )・[S> 

Now the correlation measurement is made between Z‘ and Y to control the adaptive 



weights {Wi} to achieve 

     ( Z‘, Y) = 0 

Let 

     [Y‘>  =  [D>・εSd  + [ L]・[S> 

Then, the following equivalence relation holds mathematically in the correlation 

measurement 

    (Z‘, Y) = (Z, Y‘)   

Thus SIR of the output Z be improved by 1/ε^2 times. 

     SIZ =  SIY‘  =  SIY / ε^2 

The mechanism of the improvement is depicted in the following figure. 

Note in the above equation (Z‘, Y) is a real measurement and (Z, Y‘) is purely 

mathematical since [Y‘> is only virtual.  

 

 

 

3.3. Methods of desired signal suppression 

 

3.3.1.    Demodulation for digital modulation 

In digital communications the desired signal replica is regenerated by 

demodulation of the signal. In this case ε is approximately equal to the bit error rate 

(BER), which is usually very small. Thus a very great improvement can be achieved by 

the proposed method. The method is generally called ―decision feedback equalizer‖ and 

has been widely used.  
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3.3.2.    Hard limiting for general modulation 

In general communications including analog modulations regenerating accurate 

replicas of the desired signals in interference environment is not easy.  A useful method 

in such situations is hard limiting if the initial condition is met that the power of the 

desired signal is sufficiently greater than that of the interferences signals. 

    Let us now analyze how hard limiting works on a desired signal and an interference 

signal. Let a signal be 

     Z = A・cos (ωc .t) + a. cos (ω1 .t +φ) 

The first and second terms are respectively the desired and the interference signals. In 

general they are different in frequency and phase. 

By setting  

    Θ= (ω1 – ωc).t + φ 

we can rewrite 

Z = (A+ a.cos (Θ)). cos (ωc.t)  -  a.sin (Θ). sin (ωc.t) 

If A >> a, the in-phase component a.cos (Θ) is cancelled in the hard limiter which gives 

the output; 

    Zh (=) A.cos (ωc.t) - a.sin (Θ). sin (ωc.t) 

       (=) A.cos (ωc.t – Φ) 

where    

     Φ= arctan(a/A.sin (Θ)) 

and (=) means nearly equal. 

The mechanism of the hard limiting is depicted in the following phasor diagram. 

The hard limiter output approximately is 

   Zh (=) Z  -  a.cos (Θ). cos (ωc.t) 

         =  A. cos (ωc.t) + a/2. cos ((2ωc -ω1).t –φ)  - a/2. cos (ω1).t +φ)    

 

We observe the following points about Zh(t); 

(1) The amplitude of the interference signal is halved. 

(2) A mirror image of the interference signal against the desired signal appears with the 

 same amplitude as the interference signal. 

(3) The desired signal, the interference signal and the mirror image of the interference  

signal are mutually uncorrelated or orthogonal in the signal space. 

(4) The amplitudes of the interference and the generated mirror image signals are 

halved to reduce the power to 1/4 of the original value. Hence the SIR of the output 

of the hard limiter is improved by 3dB in total and 6dB against the interference 



signal itself. This phenomenon is an instance of small signal suppression effect in 

non-linear devices [3].  

A phasor diagram on hard limiting is given in the following. 

 

 

Desired signal reduction 

We subtract Zh with adaptive weight V from Z to get Z‘.  

   Z‘ = Z - V.Zh 

The Z‘ is controlled to be orthogonal to Zh; 

    (Z‘, Zh) = 0 

From the equation we get 

    V = (1+ δ^2 /4) /  (1+ δ^2 /2 )  

where δ= a/A 

If δ<< 1, then 

    Z’∝   δ^2 /2・A cos (ωc.t)  + a. cos (ω1.t +φ)  - a/3. cos ((2ωc -ω1).t –φ)   

Thus the desired signal is reduced by the factor (a/A)^2 /2 which will improve the 

performance of the correlation measurements between Z‘ and the auxiliary paths 

signals {Yi i=1,2,,,n}. 

 

 

  

Θ 

A  +  a.cos (Θ) 

- a.sin (Θ) 
Zh         Z 

Φ 

Phasor diagram of Hard Limiting 



4. Circuits and Operations 

 

We have at the receiver, the main path signal X and the auxiliary signals {Yi; I = 1,2,,,,n}. 

We try to cancel the interferences signals in X by subtracting Yi multiplied with 

adaptive weight Wi to get the output Z. 

  Z = X – [i=1,n]∑Wi・Yi 

From Z we regenerate the desired signal replica Sd‘ and subtract the element from Z by 

LMSE method to get Z‘. 

We then determine the weight Wi (I = 1,2,,,,n) by the orthogonalization condition; 

    (Z‘, Yi) = 0  ( i = 1,2,,,,n) 

 

4.1. Time sections for control 

We conduct the above processing in successive time sections {Ts.n ; n= 0,1,2,3,,,,,,}. 

The time length of each section Ts needs to be selected to achieve sufficiently accurate 

time averaging in each section. We denote the variables in the n-th time section by 

added [n] as follows; 

    (Z‘, Yi)[n] = [t= n.Ts , (n+1).Ts]∫Z‘(t)・Yi*(t)dt 

 

4.2. Adaptive control of weights {Wi}  

We control the adaptive weights Wi by the following difference equation; 

     Wi[n] = Wi[n-1] + g. (Z‘, Yi)[n-1] /(Yi,Yi)   

     Z(t)[n] = X(t)[n – [i=1,n]∑Wi[n]・Yi(t)[n] 

where g is the loop gain of the interferences signal cancellation loop..  

The steady state Wi[n] = Wi[n-1], is achieved when the orthogonality is completed;   

(Z‘, Yi)[n] = 0 

 

4.3. Desired signal elimination  

Let the regenerated desired signal in time section n by Sd‘(t)[n], then the desired signal 

is eliminated from the output signal Z[n] by the formula; 

    Z‘(t)[n] = Z(t)[n] – V[n-1]. Sd‘(t)[n] 

    V(n) = V(n-1) + g’・(Z‘, Sd‘)[n-1]/ (Sd‘,Sd‘)  

where g‘ is the loop gain of the Desired signal elimination loop. The steady state V[n] = 

V[n-1], is achieved when the orthogonality is completed;  (Z‘,Sd‘)[n] = 0 

 

4.4. Loop stability 

The stability of the interferences cancellation loops now needs to be examined. As the 



desired signal elimination is made by the same algorithm, we will examine only the 

interferences cancelation function in the following analysis. 

What to be checked are； 

    Wi[n]– Wi[n-1] = g.(Z, Yi)[n-1] /(Yi,Yi)  (i = 1,2,,,n) 

    Z[n] = X[n] – [i=1,n]∑Wi[n].Yi[n] 

The above two equations are joined to give; 

    Wi[n] – Wi[n-1]  

    = g.{ (X, Yi)[n-1] /(Yi,Yi) - [j=1,n]∑Wj[n-1].(Yj,Yi)/(Yi,Yi) } 

    = g.{ αi - [j=1,n]∑Wj[n-1].βji /βii  } 

where 

     αi = (X, Yi) /(Yi,Yi)    

     βji = (Yj,Yi) /(Yi,Yi)   (i,j = 1,2,,,,n) 

Note αi, βji are stationary in time hence nearly constant for sufficiently large time 

interval Ts. 

 

In Z-transformation 

(1- z^-1).Wi(z) = g.αi / (1- z^-1) - [j=1,n]∑Wj(z).z^-1.βji /βii         (i= 1,2,,,n) 

where 

     W(z) = [n=0,∞]∑W[n].z^-n 

The above equation is modified; 

     [j=1,n]∑{ (1-z^-1)δji +g.βji/βii. z^-1}.Wj(z)  =  g.αi / (1-z^-1) 

In vector and matrix format; 

     <Wj(z)].[ (1-z^-1)δji +g.βji /βii. z^-1] = g./ (1-z^-1)<αi] 

Where δji is Dirac delta function and <xj] is row vector with xj in the j-th element and 

[xji] is matrix with xji as (j,i) element. 

 

4.4.1. A single auxiliary path  

The above equation reduces to   

    [ 1- (1- g.) z^-1].W(z)  =g.α/ (1-z^-1) 

Or 

    W(z) = g.α.z^2 / {(z-1)・(z- (1- g))} 

The n-th output is obtained by the inverse z-transform; 

     W[n]  = 1/ (2πi).[｜z｜=1]∫W(z).z^(n-1) dz   = α/β.{ 1 - (1- g)^ (n+1) } 

The stability condition is 

     ｜1- g｜< 1    ,or      0 < g < 2 

The correlation error exponentially converges to zero. 



    (Z[n], Y) = (X,Y).(1-g)^n 

     

4.4.2. Cases of two auxiliary paths 

 [(1-z^-1)δij +g.βij /βii. z^-1][Wj(z)>  = g./ (1-z^-1)[αi>     (i,j = 1,2 ) 

Or   

                                                       = g / (1-z^-1) 

 

 

where the boxes denote matrix or vectors. 

The stability condition is the characteristic roots of the equation 

    

    det = 0 

 

 

where det means determinant of the matrix following.     

It can be calculated to give the characteristic roots r1, r2; 

    r1 = 1 – g + g.｜β12｜/√(β11.β22) 

   r2 = 1 – g - g.｜β12｜/√(β11.β22) 

From the condition that the absolute values of r1 and r2 be smaller than 1, we get the 

stability condition 

    0 < g < 2 / (1 +｜(Y1,Y2)∣ / (‖Y1‖.‖Y2‖) 

Note ｜(Y1,Y2)∣ / (‖Y1‖.‖Y2‖) is the likelihood between Y1 and Y2,which equals to 

1 if Y1 and Y2 are identical and zero if they are uncorrelated. The stability condition for 

the case of two auxiliary paths signals is the same as for the case of a single auxiliary 

path signal if the two auxiliary paths signals are mutually orthogonal, because then the 

two cancellation loops function independently.  

 

4.4.3. Arbitrary number of auxiliary paths 

In general the cancellation loops with n auxiliary paths (n >2) signals cases will 

function stably if the auxiliary path signals are highly independent and the loop gain g 

is set at sufficiently small values. 

If the initial auxiliary paths signals {Y1,Y2,,,,Yn} are first transformed to an orthogonal 

sets of auxiliary paths signals {Y1‘‘, Y2‖,,,,Yn‖} by an orthogonalizing procedure, then 

each adaptive weight Wi (i=1,2,,,n) can be controlled independently.  

For the orthogonalizing procedure, Schmit‘s orthogonalizing method or eigen function 

method on [(Yk,Yi)] etc. are available as standard linear algebraic algorithms. 

1- (1-g).z^-1         g.β12 /β11.z^-1 

 g.β21/β22.z^-1     1- (1-g).z^-1] 

 

W1 

W2 

α1 

α2 

1- (1-g).z^-1         g.β12 /β11.z^-1 

 g.β21/β22.z^-1     1- (1-g).z^-1] 

 



5. Applications 

 

The interferences cancellation technologies have been applied to wide ranges of 

applications. 

 

5.5.1. Channel equalizers for digital signal transmission 

  The inter-symbol interferences occur by channels fading or equipment faults such 

as channel filters mismatches or errors in symbol timing recovery circuits. The main 

path is the symbols at data decision timing and the auxiliary paths signals are at 

symbol timings in the past and future around the decision timing. The 

decision-feedback equalizer is an exact implementation of the interferences cancellation 

as described in this paper. 

 

5.5.2. Echo cancellation 

The echoes occur by the reflection of the voice signal at the far end of the 

transmission lines.  An exact replica of the interference is readily available at the 

sender as delayed version of the transmit signal hence can be fully cancelled by a simple 

interference cancellation. 

     

5.5.3. Dual polarization radio wave transmission system 

  Dual polarizations of radio waves can readily double the channel capacity with the 

same frequency bandwidth. 

Let the receive signal be 

    Y1 = L11.S1   + L12 .S2  

    Y2 = L21.S1   + L22. S2 

Here both S1 and S2 are desired signals and interferences signals. 

In order to cancel mutual interferences we conduct 

    Z1 = Y1 – W1.Y2   =   (L11- W1.L21).S1 + (L12- W1.L22).S2 

    Z2 = Y2 – W2.Y1   =   (L21 –W2.L11).S1 + (L22 - W2.L12).S2 

The exact solutions are  

     W1 = L12 / L22 

     W2 = L21 / L11   

which perfectly regenerate the original signals. 

 

In order to get those transmission links parameters pilot signals are inserted with the 

signal transmitter or beacons from the satellites are utilized [4]. 



In this paper we will study the methods that can work without pilot signals. 

From Z1, Z2 we regenerate replicas of S1, S2 denoted as S1‘ and S2‘. 

 

[1] Demodulator methods 

In digital communications good replicas of the desired signals can be regenerated at the 

receiver. 

    S1’ = √(1-ε^2).S1 + S1‘‘ 

    S2’ = √(1-ε^2).S2 + S2‘‘ 

The S1‘‘ and S2‖ are errors generated in the desired signal regeneration processes. The 

norm of S1‖ is 

    ‖S1”‖^2 =ε^2 

so  

    ‖S1’‖^2 = ‖S1‖^2 = 1 

    ‖S2’‖^2 = ‖S2‖^2 = 1 

In digital communications the error rate ε^2 is roughly the symbol error rate at the 

demodulator. 

Note S1‖, S2‖ are uncorrelated with any other signals as they are randomly generated.  

By LMSE we achieve 

    (Z1, S2‘) = (Z2, Si‘) = 0 

Then we get 

    W1 = (Y1, S2‘) / (Y2, S2‘) = L12 / L22 

    W2 = (Y2, S1‘) / (Y1, S1‘) = L21 / L11 

which are the exact solutions. 

Thus we can expect to realize accurate dual polarization signal transmission radio 

systems.  

 

[2] Hard limiter methods 

For the input 

    Z1 ∝ S1+ a.S2  (∣a∣ < 1) 

the output of the hard limiter is 

    Z1h ∝ S1‘= S1+δ.a.S2+δ.a.S1‖    (∣δ∣<1) 

S1‖is the mirror image of S2 against S1. Note S1‖is orthogonal to both S1 and S2. 

Likewise for Z2; 

    Z2 ∝ S2+ a.S1  (∣a∣ < 1) 

the output of the hard limiter is 

    Z2h ∝ S2‘= S2 + δ.a.S1 +δ.a.S2‖  (∣δ∣<1) 



By LMSE function Z1 is made orthogonal to S2‘and Z2 to S1‘. By hard limiter functions 

S2‘ is produced from Z2 and S1‘ from Z1 with improved SIR.  

Thus we have the following cycles. 

    Z1 — improvement    S1‘ 

    S1‘—orthogonal       Z2 

    Z2 --- improvement    S2‘ 

    S2‘ —orthogonal       Z1 

The above transitions repeat the cycle of improvement until a nearly complete 

compensation of the cross polarization interferences is achieved. 

In the initial phase Z1[0], Z2[0] are respectively made orthogonal to Y2 and Y1. 

Then the hard limiters produce S1‘[1] and S2‘[1] respectively from Z1[0] and Z2[0]. The 

loops then function to make Z1[1] and Z2[1] respectively orthogonal to S2‘[1] and S1‘[1]. 

The above procedure continues endlessly. In each step generation of S1‘[n], S2‘[n] 

respectively from Z1[n-1], Z2[n-1] the SIR are improved, S1‘ and S2‘ approach to S1 and 

S2 coordinates. Thus the above improvement process repeats itself until it comes to the 

limits caused by thermal noise. 

The above process is depicted in the following figure. 
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5.5.4. Multiple Inputs Multiple Outputs (MIMO) 

The above dual polarization mode communication system can be readily 

generalized to MIMO systems with larger numbers of the signals and receivers. 

The conventional MIMO system was based on the orthogonalization of the receive 

signals by eigen-vectors methods making use of the Hermitian nature of the correlation 

matrix of the receive signals [5]. The orthogonalization alone is insufficient for MIMO 

function because the originality of those signals are not regenerated or enhanced.  

In the herein proposed system the SIR improvement is achieved by the use of small 

signals suppression effect of non-linear operations such as demodulation or 

hard-limiting.    

 

5.5.5. Satellites Systems Interferences Cancellation 

The method described herein is readily applicable to solve those interferences 

problems as adjacent satellites, inter-beams or interferences with terrestrial 

communications networks. 

 

5.5.6. Cellular systems Interferences Cancellation 

  - Inter-cells interferences at the mobile 

  - inter-cells, inter-sectors or with external systems interferences at a base station 

 

5.5.7. Noise cancellers 

    The method presented in this paper is applicable to wide ranges of applications so 

long as the main path and auxiliary paths signals are available with significant 

independence. A pri.o.ri knowledge about the desired signal is useful to regenerate a 

good replica of the desired signal which can be used to generate the errors that is to be 

minimized by LMSE algorithms. 

      

6. Conclusion 

The signal space analysis proposed in the previous papers [1,2 ] was restated and 

applied to general cases including external interferences and thermal noises.  

The function of interferences cancellation system was analyzed on concrete models to 

establish the stability conditions of the loops.  

The function of hard limiter as a device for generation of the desired signal replica was 

analyzed. 

The function of the dual polarization radio communication system is analyzed on two 

different methods; demodulation and hard limiting for generation of the desired signal 



replica 

The methods are applicable to general MIMO (Multi-Input-Multi-Output) system with 

more than 2 signals. 

The methods proposed in the paper are fundamental and applicable to wide ranges of 

applications. 
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