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Abstract  

Interferences among signals from different sources are universal problems in communication networks. The author proposed 

a signal space theory as an analysis means of the interferences cancellation systems [1]. A fundamental limit of Least Mean 

Square Error (LMSE) method was clarified by the signal space concept and how to eliminate the limit was shown. The method 

is essentially elimination of the desired signal component from the output before correlation measurement of the main path and 

auxiliary paths signals for control of the adaptive weights. The method applies to wide ranges of interferences cancellation 

systems, one of which is the decision-feedback equalizer widely used in digital signal transmissions.                   

It is important to discriminate the difference between orthogonality and originality of the signals.  The original signals from 

different sources are mutually orthogonal but the converse is not always true. The conventional multiple-input-multiple-output 

(MIMO) systems implemented at antenna subsystems are based on creating orthogonal sets of signals from the receive signals. 

The orthogonalization of the receive signals is merely rearrangement of the transmission paths coefficients and does not always   

improve the Signal to Interferences Ratio (SIR) of the receive signals. In this paper the author proposes MIMO systems that 

can separate the original signals by improved LMSE algorithm. The point of the method is in regeneration of the desired 

signals replicas at the receiver for more accurate correlation measurements based on which the adaptive weights of the 

interferences cancellation loops are controlled. The essence of the method is utilization of the small signal suppression effect in 

non-linear devices, such as demodulation or hard limiting. Note a pri-ori knowledge about the desired signal is used for 

regeneration of the desired signal. The method proposed in this paper can be applied to wide ranges of communications and 

control systems. 
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1. Originality and Orthogonality of Signals  
In communication systems the signals carry information 
from the senders to the receivers. The signals from 
different senders are uncorrelated because they are 
modulated by independent series of symbols. The 
originality of the signals means that the signals from 
different origins are uncorrelated and are orthogonal in 
the signal space. But the converse is not true; orthogonal 
signals are not always from different sources.. 
The objective of communication is to regenerate the 
original signals from the sender at the receiver.  
 
2. External Signals and Thermal Noises 
Suppose we have a desired signal Sd to receive by a main 
path receiver X. The receive signal X also contains other 
signals S1,S2,,,,Sm generated by different sources that 
leak into the receive circuit . In order to cancel those 
interferences, we set a number of auxiliary receivers 
Y1,Y2,,,Yn. 
The auxiliary paths signals may contain external signals 
S(m+1),S(m+2),,,S(m’) which are not contained in the 
main path signal X.  
Each receiver also contains thermal noise originated at 
the receiver antenna temperature and the front head Low 
Noise Amplifiers (LNA). 
The main path and auxiliary paths signals are now 
expressed as follows; 
  X = M・Sd + I1･S1 + I2・S2  +,,,,+ Im・Sm + Nx 
  Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm  
      +L(i, m+1)・S(m+1) + ,,,+ L(i,m’)・Sm’ + Ni 
     (i = 1,2,,,,,n) 
where Sd and {Sj ; j = 1,2,,,m,,,m’} are original signals. 
Without loss of generality we assume the norms of 
original signals are normalized: ||S||=1. 
The {Ii, Lij: i=1,2,,,n, j=1,2,,,,m,,,m’} are transmit 
coefficients of the communication paths. 
The Nx and Ni ( i=1,2,,,,n) are thermal noises. 
 
3. Limits of LMSE Method 
In order to cancel the interferences into the main path 
signal X, we subtract the auxiliary path signals Yi 
multiplied with adaptive weights Wi (i=1,2,,,n) from X to 
get signal Z.  

   Z = X – [i=1,n]∑Wi・Yi 
     =  (M- [i=1,n]∑Wi・Di )・Sd 
       + [k=1,m]∑(Ik- [i=1,n]∑Wi・Lik)・Sk 
       + [k’=m+1, m’]∑[i=1,n]∑Wi・Lik’・Sk’ 
       + Nx - [i=1,n]∑Wi・Ni 
The adaptive weights Wi are controlled to minimize the 
norm of the output signal Z by setting  
   ∂∥Z∥^2 /∂Wi* = 0 

which tells; 

    (Z, Yi) = 0 ( i= 1,2,,,,n) 

The output signal Z is made to be orthogonal 

to each auxiliary path signal Yi(i=1,2,,,,n).  

 

The adaptive weights {Wi;i=1,2,,,n} are 

solutions of the following equation; 

    [(Yi,Yk)][Wi> = [(X,Yk)>  

          (i,K = 1,2,,,,n)  

where 

(Yi,Yk)is the correlation of signal Yi and Yk. 

    (Yi,Yk)= ∫Yi・Yk* dω/2π 

and [(Yi,Yk)]is the matrix whose (i,k) element 

is (Yi,Yk). 

[Wi> is the column vector whose i-th element 

is Wi. The adjoined row vector <Wi]=(W1,,,Wn). 

 

We now check the contents of (Z, Yj) = 0 

(M- [i=1,n]∑Wi・Di )・Dj*・∥Sd∥^2 

               + 
[k=1,m]∑(Ik- [i=1,n]∑Wi・Lik)・Ljk*・∥Sk∥^2 

               + 
[k’=m+1, m’]∑[i=1,n]∑Wi・Lik’・Ljk’*・∥Sk’∥^2 

               + 
       Wj・∥Ni∥^2     

               = 0 

Ideally the second term in the above equation 

should be zero;  
[k=1,m]∑(Ik- [i=1,n]∑Wi・Lik)・Ljk* = 0  
or  
  [LL(i,j)]・[Wi> = [ILj> 
where 
  LL(i,j) = [k=1,m] ∑Lik・Ljk* 
  ILj = [k=1,m]∑Ik・Ljk* 
     (i,j = 1,2,,,n) 
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Or more simply 

  [Lik][Wi> = [Ik> 

Unluckily those transmission coefficients as 

Lij, Ik and m; the number of interference 

signals are unknown at the receiver. The only 

available signals are X and {Yi} (i=1,2,,,n).  

Thus we conduct the LMSE processing at the 

receiver believing the output Z= X-<W][Y> will 

have the minimum power if the interference 

signals are cancelled. 

 

Generalized thermal noise 

We first consider the nature of the signals in 

the system. The main path signal X includes  

the desired signal Sd and the interfering 

signals S1, S2,,, Sm. The auxiliary paths 

signals Y1,Y2,,,Yn includes those signals in 

the main path and additionally, those extra 

signals S(m+1),S(m+2),,,S(m’) and the thermal 

noise Ny.  

The above extra signals are external to the 

signal space of the main path hence their 

nature in the system is similar to that of the 

thermal noise. Therefore they will be included 

in the thermal noise Ny in the following 

analysis. 

 

Space of the auxiliary paths signals  

The signal space we are interested in here 

consists of the original desired signal Sd and 

the interfering signals {Si; i= 1,2,,,,m}. 

The auxiliary paths signals {Yi; i=1,2,,,,n} 

form vectors in the signal space {Sd, {Si}}. 

Two vectors Yi and Yj span a plane in the 

signal space by a linear combination; 

  α・Yi + β・Yj 

whereα,βare arbitrary complex numbers. 

The spanned plane is represented by the vector 

  Y(i,j) =α・Yi + β・Yj  

which maximizes the power ratio of the Sd 

component to that of the {Si} components[1]. 

The above process is repeated to get the 

vector Y(1,2,,,n) which represents the signal 

space formed by the auxiliary path signals. 

The auxiliary paths signals are now 

represented by the vector Y= Y(1,2,,,n); 

  Y = Dy・Sd + Sy + Ny 

where Sy is interference signals composed in 

the subspace {Si; i=1,2,,,m} and Ny all the 

other external signals and thermal noise.  

As Sy and Ny are mutually orthogonal, the 

angle θY between Y and Sd is; 

  tan^2(θY) = ∣Dy∣^2/ (∥SI∥^2 +∥Ny∥^2 )   

 

Limits of LMSE method 

In the previous analysis the output Z of the 

interference cancellation circuit is so 

controlled as to form it orthogonal to all the 

auxiliary signals, namely the subspace spanned 

by those signals, which tells; 

    (Z, Y) = 0  

If we express the output Z as follows, 

  Z = Mz・Sd + Sz +  Nz 

and define the angle θZ by 

    tan^2(θZ)  

    =  (∥Sz∥^2 +∥Nz∥^2 ) / ∣Mz∣^2 

Then the LMSE processing gives the result [1]; 

    θZ = θY 

The vectors relationship is depicted in the 

following figure. 
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The tan^2(θY) is inversely proportional to the desired to 
interferences signals power ratio of the subspace Y (SIY). 
The tan^2(θY) gets larger as the number of the auxiliary 
paths increases [1]. Besides the SIR of the auxiliary paths 
will be generally worse than that of the main path, thus  
the interference cancellation based on LMSE methods 
will degrade rather than improve the SIR of the output Z. 
 
4. Improved LMSE     
The above analysis has shown the shortcoming of the 
LMSE method is caused by the correlation of the desired 
signal components in the auxiliary paths signals {Yi} and 
the output Z of the circuit.  
We are to regenerate the desired signal Sd from the output   
signal Z. If the regenerated signal Sd’ is a faithful replica 
of the desired signal, by removing it from Z, we can 
eliminate the ill effects caused by the leakage of the 
desired signal Sd into the auxiliary paths signals {Yi}.  
Let  
   Sd – Sd’ = ε. Sd     (｜ε｜<< 1 ) 
We apply an LMSE operation to Z by Sd’; 
   Z’ = Z – V・Sd’ 
      = Dz・Sd + Sz +  Nz - V・Sd’ 
By LMSE method we achieve  
   (Z’, Sd’) = 0, 
by adaptive control of V to get 
  Z’ = ε・Dz・Sd + Sz +  Nz  
 
Correlation measurements 
Instead of correlation measurements between Z and Yi (i= 
1,2,,,n) we conduct the measurement between Z’ and Yi. 
The {Yi} are composed of the components;  
   Yi = Di・Sd + Syi + Ni 
     (i = 1,2,,,,,n) 
where 
   Syi = [j=1,m]∑Lij・Sj 

From the above relations the following 

equivalence holds; 

    (Z’,Yi) = (Z, Yi’) = 0 

where the Yi’is;     

  Yi’ = ε・Di・Sd + Syi + Ni 
   (i=1,2,,,,n) 
Since the factor ε is common among all Yi, the 

resultant subspace of the auxiliary path signals becomes; 
   Y’= ε・Dy・Sd + Sy + Ny 

And the angle θY between Y and Sd is; 

   tan^2(θY’) 

   =ε^2 ・∣Dy∣^2/ (∥Sy∥^2 +∥Ny∥^2 )   

   =ε^2 ・tan^2(θY) 

By the orthogonality condition; 

     (Z’,Yi) = (Z, Yi’) = 0 

we get the output Z which is controlled to 

meet the following relation in the signal 

space;     θZ =  θY’ 

or 

    tan^2(θZ)= tan^2(θY’) 

              =ε^2 ・tan^2(θY)  

As 

   tan^2(θZ)  

   = (∥Sz∥^2 +∥Nz∥^2 ) /(∣Mz∣^2)   

   = 1/SIZ + 1/SNZ 

where SIZ and SNZ are respectively the signal 

to interferences and noise power ratios of 

signal Z, the above analysis tells 1/ ε ^2 

times improvement can be achieved by the above 

method. 

The mechanism of the improvement is depicted 

in the following figure. 
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output signal is improved quite significantly. 

 

Generation of desired signal replica 

In digital communications the desired signal 

replica is regenerated by demodulation of the 

signal. In this case εis approximately equal 

to the bit error rate (BER), which is usually 

very small. Thus a very great improvement can 

be achieved by the proposed method. The method 

is generally called “decision feedback 

equalizer” and has been widely used.  

    

5. Hard Limiting 
In general communications including analog modulations 
the demodulation of the desired signal in interference 
environment is not easy.  A useful method in such 
situations is hard limiting if the initial condition is met 
that the power of the desired signal is sufficiently greater 
than that of the interferences signals. 
  Let us now analyze how hard limiting works on a 
desired signal and an interference signal. Let 
  Z = A・cos (ωc.t) + a. cos (ω1.t +φ) 
The first and second terms are respectively the desired 
and the interference signals. They are different in 
frequency and phase. 
By setting  
   Θ= (ω1 – ωc).t + φ 
we can rewrite 
  Z = (A+ a.cos (Θ)). cos (ωc.t) 
     - a.sin (Θ). sin (ωc.t) 
If A > a, the in-phase component a.cos (Θ) is cancelled in 
the hard limiter which gives the output; 
  Zh (=) A.cos (ωc.t) - a.sin (Θ). sin (ωc.t) 
     (=)A.cos (ωc.t –Φ) 
where    
  Φ= arctan(a/A.sin (Θ)) 
and (=) means nearly equal. 
The mechanism of the hard limiting is depicted in the 
following phasor diagram. 
The hard limiter output is 
  Zh (=) Z -  a.cos (Θ). cos (ωc.t) 
     =  A. cos (ωc.t) + a/2. cos ((2ωc -ω1).t –φ) 

               - a/2. cos (ω1).t +φ)    

 
   
 
 
 
 
 
 

 
 
 We observe the following points about Zh(t); 
(1) The amplitude of the interference signal is halved. 
(2) A mirror image of the interference signal against the 

desired signal appears with the same amplitude as the 
interference signal. 

(3) The desired signal, the interference signal and the 
mirror image of the interference signal are mutually 
uncorrelated or orthogonal in the signal space. 

(4) The amplitudes of the interference and the generated 
mirror image signals are halved to reduce the power 
to 1/4 of the original value. Hence the SIR of the 
output of the hard limiter is improved by 3dB in total 
and 6dB against the interference signal itself.  

   This is an instance of small signal suppression effect 
   in non-linear devices[2]. 
 
Desired signal reduction 
We subtract Zh with adaptive weight V from Z to get Z’.  
  Z’ = Z- V.Zh 
The Z’ is controlled to be orthogonal to Zh; 
  (Z’, Zh) = 0 
From the equation we get 
  V = (1+ δ^2 /4) /  (1+ δ^2 /2 )  
where δ= a/A 

If δ<< 1, then 

  Z’∝   δ^2/2・A cos (ωc.t)  
         + a. cos (ω1).t +φ) 

     - a. cos ((2ωc -ω1).t –φ)   
Thus the desired signal is reduced by the 

factor (a/A)^2/2 which will improve the 

performance of the correlation measurements 

between Z’ and the auxiliary paths signals 

{Yi i=1,2,,,n}. 

Θ 

A  +  a.cos (Θ) 

- a.sin (Θ) 
Zh         Z 

Φ 

Phasor diagram of Hard Limiting 
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6. Circuits and Performances  
We have at the receiver, the main path signal X and the 
auxiliary signals {Yi; I = 1,2,,,,n}. We try to cancel the 
interferences signals in X by subtracting Yi multiplied 
with adaptive weight Wi to the the output Z; 
  Z = X – [i=1,n]∑Wi・Yi 
From Z we regenerate the desired signal Sd’ and subtract 
the element from Z by LMSE method to get Z’. 
We then determine the weight Wi (I = 1,2,,,,n) by  the 
orthogonalization condition; 
  (Z’, Yi) = 0 
  (I = 1,2,,,,n) 
 
Time sections control  
We conduct the above processing in successive time 
sections {Ts.n ; n= 0,1,2,3,,,,,,}. The time length of each 
section Ts needs to be selected to achieve sufficiently 
accurate time averaging in each section. We denote the 
variables in the n-th time section by added [n] as follows; 
  . (Z’, Yi)[n] = [t= n.Ts, (n+1).Ts]∫Z’(t)・Yi*(t)dt 
 
Adaptive control of weights Wi 
We control the adaptive weights Wi by the following 
difference equation; 
  Wi[n] = Wi[n-1] + g.. (Z’, Yi)[n-1]/(Yi,Yi)   
  Z[n] = X – [i=1,n]∑Wi[n]・Yi 
where g is the loop gain of the interferences signal 
cancellation loop..  
The steady state Wi[n] = Wi[n-1], is achieved when the 
orthogonality is completed;  (Z’, Yi)[n] = 0 
 
Desired signal elimination 
Let the regenerated desired signal in time section n by 
Sd’(t)[n], then the desired signal is eliminated from the 
output signal Z[n] by the formula; 
  Z’(t)[n] = Z(t)[n] – V[n-1]. Sd’(t)[n] 
  V(n) = V(n-1) + g’・(Z’, Sd’)[n-1]/ (Sd’,Sd’)  
where g’ is the loop gain of the Desired signal elimination 
loop. The steady state Vi[n] = Vi[n-1], is achieved when 
the orthogonality is completed;  (Z’,Sd’)[n] = 0 
 
Loop stability 
The stability of the interferences cancellation loops now 

needs to be examined. As the desired signal elimination is 
not relevant in this theme we will exclude it in the 
following analysis. 
What to be checked are； 
  Wi[n]– Wi[n-1] = g.(Z, Yi)[n-1] /(Yi,Yi)  (i = 1,2,,,n) 
  Z[n] = X[n] – [i=1,n]∑Wi[n].Yi[n] 
The above two equations are joined to give; 
  Wi[n] – Wi[n-1]  
  = g.{ (X, Yi)[n-1] - [j=1,n]∑Wj[n-1].(Yj,Yi)/(Yi,Yi) } 
  = g.{ αi - [j=1,n]∑Wj[n-1].βji /βii  } 
where 
     αi = (X, Yi)[n-1] = (X, Yi)   
     βji = (Yj,Yi)[n] =  (Yj,Yi)   
           (i,j = 1,2,,,,n) 
Note αi, βji are stationary in time hence constant. 
 
In Z-transformation 

(1- z^-1).Wi(z) = g.αi / (1-z^-1)  
               - [j=1,n]∑Wj(z).z^-1.βji /βii  
            (i= 1,2,,,n) 
where 
   W(z) = [n=0,∞]∑W[n].z^-n 
The above equation is modified; 
   [j=1,n]∑{ (1-z^-1)δji +g.βji/βii. z^-1}.Wj(z) 
  =  g.αi / (1-z^-1) 
In vector and matrix format; 
 <Wj(z)].[ (1-z^-1)δji +g.βji /βii. z^-1]  
   = g./ (1-z^-1)<αi] 
Where δji is Dirac delta function and <xj] is row 
vector and [xji] is matrix with xji as (j,i) element.. 
 
Case of a single auxiliary path 
The above equation reduces to   
  [ 1- (1- g.) z^-1].W(z)  =g.α/ (1-z^-1) 
Or 
  W(z) = g.α.z^2 / {(z-1)・(z- (1- g))} 
The n-th output is obtained by the inverse z-transform; 
   W[n] = 1/ (2πi).[｜z｜=1]∫W(z).z^(n-1) dz 
        = α/β.{ 1 - (1- g)^ (n+1) } 
The stability condition is 
   ｜1- g｜< 1 
Or 
    0 < g < 2 
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The correlation error ; 
  (Z[n], Y) = (X,Y).(1-g)^n 
exponentially converges to zero. 
     
Case of two auxiliary paths 
[ (1-z^-1)δij +g.βij /βii. z^-1][Wj(z)>  
   = g./ (1-z^-1)[αi> 
Or 
  

 
 
 
= g / (1-z^-1) 
 
where the dashed boxes denote matrix or vectors. 
The stability condition is the characteristic roots of the 
equation 
                                
                                  = 0 
 
where ｜matrix｜ stands for the determinant of the 
matrix. 
It can be calculated to give the characteristic roots r1, r2; 
  r1 = 1 – g + g.｜β12｜/√(β11.β22) 
 r2 = 1 – g - g.｜β12｜/√(β11.β22) 
From the condition that the absolute values of r1 and r2 
be smaller than 1, we get the stability condition 
  0 < g < 2 / (1 +｜(Y1,Y2)∣ / (∥Y1∥.∥Y2∥) 
 
Note  ｜ (Y1,Y2) ∣  / ( ∥Y1∥ .∥ Y2∥ ) is the 

likelihood between Y1 and Y2,which equals to 1 

if Y1 and Y2 are identical and zero if they 

are uncorrelated. The stability condition for the case 
of two auxiliary paths signals is the same as for the case 
of a single auxiliary path signal if the two auxiliary paths 
signals are mutually orthogonal, because then the two 
cancellation loops will function independently.  
In general the cancellation loops with n auxiliary paths  
(n >2) signals cases will function stably if the loop gain g 
is properly selected. 
 
Orthogonalization of auxiliary path signals 
From the auxiliary paths signals {Yi ; I = 1,2,,,,n} we can 

measure the mutual correlations (Yi, Yj) to get the matrix 
[(Yi, Yj)] which is Hermite ( (Yi, Yj) = (Yj,Yi)*, * means 
complex conjugate) hence possesses real igen-values and 
mutually orthogonal eigen-vectors. Those eigen-vectors 
can be used to orthogohalize the auxiliary paths signals to 
get {Y’i; i = 1.2....n} which are mutually orthogonal.  
  (Yi’, Yj’) = 0  (if i =/= j) 
Then the cancellation loops can be formed with {Y’i} to 
guarantee the stability condition of the loops. 
 
7. Applications  
The interferences cancellation technologies have been 
applied to wide ranges of applications. 
 
<> Channel equalizers for digital signal transmission 
  The inter-symbol interferences occur by channels 
fading or equipments faults such as channel filters 
mismatches or errors in symbol timing recovery circuits. 
The main path is the symbols at data decision timing and 
the auxiliary paths signals are at symbol timings in the 
past and future around the decision timing. The decision-
feedback equalizer is an exact implementation of the 
interferences cancellation as described in this paper. 
 
<> Echo cancellation 
  The echoes occur by the reflection of the voice signal 
at the far end of the receiver. An exact replica of the 
interference is readily available at the sender as delayed 
version of the transmit signal hence can be fully cancelled 
by a simple interference cancellation. 
     
<> Dual polarization radio wave system 
  Dual polarizations of radio waves can readily double 
the channel capacity with the same frequency bandwidth. 
Let the receive signal be 
  Y1 = L11.S1   + L12 .S2  
  Y2 = L21.S1   + L22. S2 
Here both S1 and S2 are desired signals and interferences 
signals. 
In order to cancel mutual interferences we conduct 
  Z1 = Y1 – W1.Y2  
     = (L11- W1.L21).S1 + (L12- W1.L22).S2 
 

1- (1-g).z^-1        g.β12 /β11.z^-1 

g.β21/β22.z^-1     1- (1-g).z^-1 

W1 

W2 

α1 
α2 
 

1- (1-g).z^-1         g.β12 / β11.z^-1 

g.β21 / β22.z^-1]      1- (1-g).z^-1 
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  Z2 = Y2 – W2.Y1  
  = (L21 –W2.L11).S1 + (L22 - W2.L12).S2 
The exact solutions are  
   W1 = L12 / L22 
   W2 = L21 / L11   
which perfectly regenerate the original signals. 
In order to get those transmission links parameters pilot 
signals are inserted with the signal transmitter or beacons 
from the satellites are utilized [3]. 
 
In this paper we will study the methods that can work 
without pilot signals. 
From Z1, Z2 we regenerate replicas of S1, S2 denoted as 
S1’ and S2’. 
 
Demodulator methods 
In digital communications good replicas of the desired 
signals can be regenerated at the receiver. 
  S1’ = √(1-ε^2).S1 + S1’’ 
  S2’ = √(1-ε^2).S2 + S2’’ 
The S1’’ and S2” are errors generated in the desired 
signal regeneration processes. The norm of S1” is 
  ∥S1”∥^2 =ε^2 
so  
  ∥S1’∥^2 =∥S1∥^2 = 1 

  ∥S2’∥^2 =∥S2∥^2 = 1 
In digital communications the error rateε^2 is roughly 
the symbol error rate at the demodulator. 
Note S1”, S2” are uncorrelated with any other signals as 
they are randomly generated.  
By LMSE we achieve 
  (Z1, S2’) = (Z2, Si’) = 0 
Then we get 
  W1 = (Y1, S2’) / (Y2, S2’) = L12 / L22 
  W2 = (Y2, S1’) / (Y1, S1’) = L21 / L11 
which are the exact solutions. 
Thus we can expect to realize accurate dual polarization 
signal transmission radio systems.  
 
Hard limiter methods 
For the input 
  Z1 ∝ S1+ a.S2  (∣a∣ < 1) 
the output of the hard limiter is 

  Z1h ∝ S1’= S1+δ.a.S2+δ.a.S1”    (∣δ∣<1) 

S1”is the mirror image of S2 against S1. Note 

S1”is orthogonal to both S1 and S2. 

Likewise for Z2; 

  Z2 ∝ S2+ a.S1  (∣a∣ < 1) 
the output of the hard limiter is 

  Z2h ∝ S2’= S2 + δ.a.S1 +δ.a.S2”  (∣δ∣<1) 

By LMSE function Z1 is made orthogonal to 

S2’and Z2 to S1’. By hard limiter functions 

S2’ is produced from Z2 and S1’ from Z1 with 

improved SIR.  

Thus we have the following cycles. 

  Z1 —- improvement  S1’ 

  S1’—orthogonal    Z2 

  Z2 -- improvement  S2’ 

  S2’ —orthogonal    Z1 

The above process is depicted in the following 

figure. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the initial phase Z1[0], Z2[0] are 

respectively made orthogonal to Y2 and Y1. 

Then the hard limiters produce S1’[1] and 

S2’[1] respectively from Z1[0] and Z2[0]. The 

loops then function to make Z1[1] and Z2[1] 

respectively orthogonal to S2’[1] and S1’[1]. 

The above procedure continues endlessly. In 
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each step generation of S1’[n], S2’[n] 

respectively from Z1[n-1], Z2[n-1] the SIR are 

improved, S1’ and S2’ approach to S1 and S2 

coordinates. Thus the above improvement 

process repeats itself until it comes to the 

limits caused by thermal noise.  

 

<> Multiple Input Multiple Output (MIMO) 
The above dual polarization mode communication system 
can be readily generalized to MIMO systems with larger 
numbers of the signals and receivers. 
The conventional MIMO system was based on the 
orthogonalization of the receive signals by eigen-vectors 
methods making use of the Hermitian nature of the 
correlation matrix of the receive signals [4]. The 
orthogonalization alone is insufficient for MIMO function 
because the originality of those signals are not 
regenerated or enhanced.  
In the herein proposed system the SIR improvement is 
achieved by the use of small signals suppression effect of 
non-linear operations such as demodulation or hard-
limiting.    
 
<> Others 
  The methods described in this paper can be applied to a 
wide range of applications.  
> Satellite systems  
   adjacent satellites, inter-beams or interferences  
   with terrestrial communications networks. 
> Cellular systems 
  - Inter-cells interferences at the mobile 
  - inter-sectors interferences at a base station 
> Noise cancellers  
 
8. Conclusion 
The signal space analysis proposed in the previous paper 
[1] was applied to general cases including external 
interferences and thermal noises.  
The function of interferences cancellation system was 
analyzed on a concrete model to establish the stability 
conditions of the loops..  
The function of hard limiter as a device for generation of 
the desired signal replica was analyzed. 

The function of the dual polarization communication 
system is analyzed for two different methods to generate 
the desired signal replica; demodulation and hard limiting. 
The methods are applicable to general MIMO (Multi-
Input-Multi-Output) system with more than 2 signals. 
The methods proposed in the paper are fundamental and 
applicable to wide ranges of applications. 
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