
一般(様式 1)社団法人 電子情報通信学会 信学技報 

THE INSTITUTE OF ELECTRONICS,                                  IEICE Technical Report  
INFORMATION AND COMMUNICATION ENGINEERS 

 

 

衛星通信における同期技術 
－通信システムの安定動作のために－ 

市吉 修 

†〒252-0136 相模原市緑区上九沢 230-7 
‡二十一世紀を楽しく生きよう会 

E-mail:  osamu-ichiyoshi@muf.biglobe.ne.jp 

あらまし 
通信網において最も広く用いられている同期技術は位相同期ループ(Phase-Lock-Loop, PLL)である。PLL は一旦同

期を確立すると優れた追尾特性を有するが、その難点は引き込み動作、非同期状態に始まり同期状態に到る初期接

続過程にある。即ち初期周波数誤差が大きいと同期過程に長大な時間がかかり、場合によっては同期に至らない事

も起こる。この問題は低 C/N 条件ではより甚だしくなる。PLL の引き込み問題の原因は位相比較器の出力が位相

誤差 θe に比例するものではなく sin(θe)に比例するものである事による。非同期時には位相比較器は周波数誤差ωe
に対して sin(ωe.t) (t は時間)なるビート波形を生じ、PLL は AFC 動作を行い、周波数誤差を縮小する。周波数誤差

が同期範囲に入ると位相制御状態に移行し、同期が確立する。ここで問題は PLL の AFC 動作が不十分なところに

ある。本稿においては PLL の引き込み動作を解析し、その限界を明らかにする。次にその限界を打破する為に従

来用いられてきた技術を紹介し、更に今後有望な技術を提案する。 
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Abstract  

The most widely used method for synchronization in communication systems is Phase-Locked-Loop (PLL). The PLL 
shows excellent tracking performances once the synchronization state is achieved. However, the problems of the PLL 
exist in its Pull-In process; it can take a long time or fail in achieving the synchronization state if the initial frequency 
difference is too large. The problem is enhanced in poor C/N conditions. The initial acquisition problem of the PLL 
comes from the fact that the phase detector gives a signal proportional to sin(θe) instead of θe which is the phase error. In 
the asynchronous state the phase detector gives a sine wave signal which frequency modulates the voltage controlled oscillator 
(VCO).  In the asynchronous state the PLL functions as an automatic frequency control (AFC) device which achieves 
reduction of the frequency error to the range of Lock-In frequency where the PLL can achieve automatic phase control (APC) 
to establish the synchronization state. The problem comes from the poor AFC performance of the PLL. In this paper the pull-in 
process is analyzed to clarify the problem. Then some methods to improve the pull-in processes are described including some 
new methods. . 
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1. PLL in Satellite Communications 
Phase-Lock-Loop (PLL) is a universal technology for 

synchronization used in vast areas in communications and controls 

systems. For communication satellites the PLL works in the critical 

components as frequency converters, timing generators and 

MODEMs. The onboard systems are required to be extremely 

reliable as repair of the components on the satellites is impossible 

once they are launched on the orbits. One such critical failure is a 

loss of synchronization by failure of a PLL subsystem. The PLL is 

a reliable component in steady state operations. It can fail in the 

pull-in process when the initial frequency difference is large 

especially in poor C/N conditions.   

 

2. Pull-In Process of PLL 
2.1 Structure of PLL 

The structure of PLL is given in Fig 2-1.  

 

The PLL is composed of PC; phase comparator, LPF; loop filter 

and VCO; voltage controlled oscillator. The input signal is  

   si(t) = sin(ωi・t + θi)  

and the output signal so(t) is 

   so(t) = cos(ωo・t + θo)     

where ω, θstand for the frequency and phase of the input and 

output signals. 

The PC gives the output  

  vp = Kp・sin (ωe・t + θe) 

whereωe =ωi – ωo, and θe =θi –θo. 

Kp is the phase detection sensitivity (V/rad).  

The phase detector output is smoothed by the LPF to give the 

control voltage vc to control the VCO. The VCO is an FM 

oscillator whose output frequency changes proportionally to the 

control voltage vc. 

   ωo =ωf + kv・vc 

whereωf is free run frequency and Kv (rad/sec/V) is the FM 

sensitivity of the VCO. 

2.2 Function of PLL  

The function of PLL is analyzed by the following figure. 

 

Where Θi(s), Θo(s) are the Laplace transforms of the 
phases of the input and output signals. Note the VCO 
functions as an integrator; the impulse response of 
which is;  
  [0, ∞]∫e-(s・t) dt = 1/s 
A typical loop filter is 
  F(s) = α+ 1 / (s・τ) 

2.2.1 PLL functions in synchronization state 
 In synchronization (steady) state the PLL functions 

in linear modes; the phase comparator gives 
approximately Kp・Θe (Θe = θe =θi –θo,  ωe = 0). 
Then the open loop transfer function of PLL is 
  Θo (s) = K0・(α+ 1 / (s・τ) / s ・Θe 
       = Go(s) ・(Θi - Θo). 
Where Ko = Kp・Kv (1/sec) is the loop gain of the 

PLL. Go(s) is the Open-Loop transfer function.  
The closed loop transfer function of the PLL is 
  H(s) = Θo / Θi = Go(s) / (1 + Go(s)) 
 = (2ζ・ωn・s +ωn^2) / (s^2 + 2ζ・ωn・s +ωn^2) 
Where  ωn = √(Ko / τ) ; natural angular frequency 
        ζ = 1/2・α・√(Ko・τ) ; damping factor. 
Thus the function of the PLL in steady state is an LPF.   
Width the bandwidth; BL = ωn/2・( ζ + 1/(4ζ) ) 

LPF PC VCO 

Input 

ωi・t +θi 
Output 

ωo・t +θ0 vp          vc   

Fig 2-1  Structure of Phase-Lock Loop (PLL) 

+ F(s) Kv/s 

Input 

Θi (s) 
Vp          Vc 

Output 

Θo (s) 

Figure 2-2. Functional Block Diagram of PLL 
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2.2.2 Pull-In Process of PLL 
When the synchronization is not achieved yet, the 

phase comparator gives a beat signal; 
  vp = Kp・sin (ωe・t + θe) 

The loop filter output is; 
  vc =α・vp+ Vint 
where Vint is the voltage integrated by the loop filter. 
The control voltage vc controls the frequency of the 

VCO with the free run frequency ; ωf. 
  ωo =ωf + Kv・Vc 

 =ωf + α・Ko・sin (ωe・t + θe) + Kv・Vint 

=ωF +α・Ko・sin (ωe・t + θe) 
Where       
   ωF =ωf + Kv・Vint 

is the average frequency of the VCO output. 
The frequency error is; 
  ωe =ωi – ωo  

= Δω -  α・Ko・sin (ωe・t + θe) 
=Δω – ωL・sin (Θe) 
Where 
  ωL = α・Ko ; Lock -in frequency 

   Δω = ωi – ωF ; Average frequency error  
    Θe =ωe・t + θe 

As  

   dΘe / dt = ωe 

The above relationship is rewritten; 

  dΘe / dt =Δω – ωL・sin (Θe) 

Apparently a steady state; dΘe / dt =0, can be achieved  

if  ｜Δω｜< ωL 

and the residual phase error Θes; 

     Θes = arcsin(Δω / ωL)   

henceωL is called Lock-In frequency. 

2.2.3 AFC function of PLL 

When ｜Δω｜> ωL, there is no steady state and the phase 

comparator gives a sinusoidal wave. The one cycle period Te of the 

beat signal is obtained as follows; 

  dt = 1 / {Δω – ωL・sin (Θe)} dΘe 

  Te = [0, 2π]∫1 / {Δω – ωL・sin (Θe)} dΘe 

=  2π/Δω / √(1 – (ωL /Δω)^2 ) 

The sinusoidal component contains a DC component Vfd which 

gives frequency discrimination voltage. 

  Vfd = 1/ Te ・∫α・Kp・sin (Θe) dt 

=  1/ Te ・ 

[0, 2π]∫α・Kp・sin (Θe) / {Δω – ωL・sin (Θe)} dΘe 

= α・Kp・Δω /ωL・( 1 - √(1 – (ωL /Δω)^2 ) 

This voltage is applied to the VCO to reduce the frequency error 

by the amount of ωfc. 

  ωfc =Δω・( 1 - √(1 – (ωL /Δω)^2 ) 

which is depicted in the following figure. 

 

 

 

 

 

 

 

 

 

AFC Loop 

The above correction frequency ωfc is integrated by the loop 

filter and controls the VCO in the AFC Loop as depicted in the 

following figure. 

 

 

The AFC loop of the PLL in the Pull-in process is ruled by the 

differential equation; 

 dΔω/dt = - 1/τ・Δω・( 1 - √(1 – (ωL /Δω)^2 ) 

X 1 - √(1 – (ωL /Δω)^2 ) 

 

1/τ∫dt 

ωf 

Fig.2-4   AFC Loop of PLL in Pull-in Process 

+ 

Δω 

+1 -1 Δω/ ωL 
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Fig.2-3  Frequency Discrimination Characteristics 

 



 

 

The pull-in time Tp is given by; 

 Tp /τ= [ωL, Δωo]∫d(Δω) /(Δω・( 1 - √(1 – (ωL /Δω)^2 )) 

=[1, Δωo /ωL]∫(x + √(x^2 – 1)) dx 

> 1/2. ((Δωo /ωL)^2 – 1) 

< (Δωo /ωL)^2 – 1 

Therefore the pull in time in the case the initial frequency error 

Δωo is much greater than the Lock-in frequency ωL is given by ; 

Tp (=) τ・(Δωo /ωL)^2 

Similar results are given by Viterbi [Ref. 1]. 

 
3. PLL with Enhanced AFC 
The weakness of the PLL in the pull-in process had been studied  

and various methods have been used. One group of methods 

enhance the AFC functions of the PLL. 

                   Fig. 3-1 PLL with enhanced AFC 

Lindsay describes the method which uses a differentiator for the 

frequency error sensing device [Ref.2]. The author developed 

methods that use Low Path Filters for the frequency error sensors 

[Ref.3, 4]. Those methods proposed by the author have shown 

excellent performances in low C/N conditions.   

  The frequency error is detected as follows. 

The first phase comparator gives the output;   

      vp = A・sin (ωe・t + θe) 

The output of the second phase comparator is; 

      vq = A・cos (ωe・t + θe) 

For the frequency error sensor, we use a simple low pass filter with 

the time constant Td and the transfer function; 1 / (1+ s・Td) . 

Then the output of the frequency error sensor is; 

 vq’ =A/√(1+(ωe.Td)^2 ). cos (ωe.t +θe - arctan (ωe.Td) ) 

Then the frequency discriminator gives 

Vfd = vp・vq’ 

= A・sin (ωe.t +θe) 

・A/√(1+(ωe.Td)^2 ). cos (ωe.t +θe - arctan (ωe.Td) ) 

= A^2 / √(1+(ωe.Td)^2 )・sin(arctan (ωe.Td)) 

= A^2・ωe.Td  /  (1+(ωe.Td)^2 ) 

which gives a good frequency discrimination performance. 

 

 

As the frequency sensing device is a low pass filter, it is robust 

against thermal noise. 

 

4. Complex PLL 

The essence of the above enhanced AFC technology is the use of 

the complex signals.  

   e^(jΘ) = cos(Θ) + j.sin(Θ)    (j^2 = -1) 

The idea can be further extended to realize a fully complex PLL as 

described in the following. 

4.1 Transient response of an LPF 

Let be a pair of Low-pass filters with identical transfer functions;   

   Lc(s) = 1 / ( 1+ s.Tc) 

Apply a complex signal wi(t) to the filter with the initial wi(0) = 0. . 

   wi(t) =  e^ (j(ωe.t +θe))      

Then the output response is  

   wo(t) = e^j(θe – arctan(ωe.Tc)) / √(1+(ωe.Tc)^2 ) 

         ・( e^(jωe.t) – e^(-t / Tc) ) 

The response signal is in different time scale is 

   wo(t) =   0                          (t=0) 

        =  t / Tc・e^( j(ωe.t+θe))        (t << Tc) 

        =  e^j( ωe.t + θe – arctan(ωe.Tc))  

           / √(1+(ωe.Tc)^2 )            (t>>Tc) 

X LPF + VCO 

π/2 

X Frq error sensor 

X Freq. error Discriminator 

ωe.Td 

Vfd 

+1 -1 

Fig.3-2   Frequency Discrimination Characteristics of the 

LPF Baseband Frequency Discriminator 
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Note that the output response in short time after the input of the 

signal is  

   wo(t) = t / Tc・wi(t) 

That is the output signal phase is exactly that of the input signal. 

4.2 Complex PLL ; Basic Structure 

The above fact suggests that a complex PLL with fast processing 

time can be realized with a perfect phase error detection capability. 

Furthermore, the circuit can be implemented in a perfect digital 

signal processing (DSP) circuitry. A bock diagram is shown in 

Fig.4-1. In the figure all elements function in complex manners. 

Suppose we have two complex variables ; w = x + jy,  c= a + jb. 

Then the signal processing are made as follows; 

 Addition ;    w + c = (x + a) + j(y + b) 

Multiplication  w・c = (a.x – b.y) + j( a.y + b.x) 

Note a complex multiplication requires four real multiplications. 

Another basic element in the complex PLL is the integrator. 

Let  the input be ;  vi(n)  = e^( jθi(n))    (n-th sample) 

And the output ;    vo(n)  = e^( jθo(n)) 

Conduct the following complex multiplication; 

    vo(n) = vi(n)・vo(n-1)   

In terms of the phase, it is the addition as follows; 

     θo(n) = θi(n) + θo(n-1) 

In Z-transform 

    Θ(z) = [n= 0, ∞]∑θ(n)・z^(-n) 

  ( z = e^(s.Ts) ; Ts is the time period of the DSP processing) 

     Θo(z) =Θi(z) +  z^(-1)・Θo(z) 

Or   

     Θo(z) / Θi(z) =  1/ ( 1 - z^(-1) ) 

For t << Ts, this is nearly equal (denoted by (=)) 

  Θo(z) / Θi(z) =  1/ ( 1 - e^(-s.Ts) ) 

               (=) (1/Ts) / s 

namely an integrator with gain 1/Ts. 

The complex PLL depicted in Fig.4-1 is composed of the complex 

processing devices; adders and multiplies as above described..  

4.3 Functions of Complex PLL 

In terms of the phases of the signals, the multiplication of the 

complex signals is equivalent to addition of the phase. The 

equivalent functional block diagram in terms of the signals phases  

is given by Fig. 4-2.   

Note the LPF(Tc) is transparent in terms of the phase.   

 

The transfer function of of the complex PLL is achieved as follows. 

     Θo(z) = Θe(z). z^-1/ (1- z^-1) 

      Θe(z) = Θi(z) – Θo(z) 

The transfer function is simply  

      Θo(z) / Θi(z) = z^-1 

Namely the output signal phase is simply that of the input signal 

delayed only by one sample. 

One slight problem is the steady state error. 

For the frequency error ωe; 

    θi (n) = ωi. Ts.n + θe 

    θo (n) = θi (n-1)  

           = ωi. Ts.(n-1) + θe 

 The steady state phase error is 

    θes(n) =θi (n) - θo (n) 

          =ωi. Ts   

The steady state phase error can cause problems in some 

applications that require very small phase errors, e.x. MODEMs. 

The above phase error remains because the complex PLL is the first 

x LPF(Tc) x 

Z^-1 

Fig. 4-1 Structure of Complex PLL 

* ; complex conjugate 

(One sample delay) 

In Out 

+ + 

Z^-1 

- 

Θi(z) 
Θo(z) 

Fig 4-2  Functional Block Diagram of Complex PLL 

( First order type) 



 

 

order type PLL. As well known the steady state phase error of the 

PLL can be removed by a secondary order PLL with a perfect 

integrator. The functional block diagram of the second order 

complex PLL is given in the figure. 

 

  The transfer function of the second order complex PLL is now 

obtained.  

      Θo(z) = Θe(z).{1 + 1/(1-z^-1) }. z^-1/ (1- z^-1) 

      Θe(z) = Θi(z) – Θo(z) 

The transfer function is 

            Θo(z) / Θi(z) = z^-1・(2 – z^-1) 

In the time domain 

     θi (n) = ωi. Ts.n + θe 

    θo (n) = 2θi (n-1) -θi (n-2)  

           = ωi. Ts.n + θe 

           = θi (n) 

Hence the phase error is 

     θe (n) = θi (n) -θo (n)  

           = 0 

4.4 Fully digital implementation of the complex PLL 

The proposed complex PLL can be fully digitally implemented. 

In addition to the complex adders and multipliers, the LPF(Tc) can 

be also implemented by DSP devices as follows. 

The transfer function of the LPF 

    L(z) = 1 / ( 1 – α・z^-1)            (0 < α <  1) 

        = 1 / ( 1 – α・e^(-s.Ts) ) 

       (=)1 / ( 1 – α) / {1 + α.Ts / (1 – α)・s } 

Which is equivalent to LPF(Tc) with the time constant Tc; 

     Tc = α.Ts / (1 – α)   

4.5 Noise performances 

The input signal has additive thermal noise which is Additive, 

White and Gaussian Noise (AWGN) with broad bandwidth Bi. 

The input signal is a sum f the signal and AWGN ni(t). 

    wi(t)  = A・sin (ωi・t + θi) + ni(t) 

The input C/N is 

     [C/N]i = (A^2 / 2) / (No.Bi) 

where No is the noise power density (W/Hz) and Bi the noise 

bandwidth (Hz). 

The C/N is maintained in the complex multiplier that functions as 

phase comparator. The C/N is then improved by the low path filter   

Lc(s) = 1 / ( 1 + s.Tc). The bandwidth of the LPF is; 

     Bc = 1/ (2π.Tc)        (Hz) 

Thus the C/N at the output of LPF(Tc) is 

     [C/N]c = [C/N]i . Bi / Bc 

It is expected that this gives the C/N of the output signal of the 

proposed complex PLL.  

 

Conclusions 
The problems of PLL in the pull-in processes were 

reviewed. The pull-in process mechanism was 
analyzed by a simple model. Some field-proven 
methods to enhance the AFC functions of the PLL in 
the initial acquisition are described. The essence of 
those technologies is processing of complex signals. A 
new type of PLL totally of complex signal processing 
is proposed. The complex PLL can be implemented in 
perfect DSP circuitry. The proposed complex PLL is 
not field-proven yet. The author expects the new 
generations of engineers will improve the technology 
to realize PLL with perfect pull-in capability.   
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