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Abstract  

Interferences among signals from different sources are universal problems in communication networks. Typical examples 

are interferences coming through antenna side-lobes in radio networks. Daily interferences come through power lines from  

engines of automobiles, airplanes or other sources. The inter-symbol interferences in digital communications and echoes in 

long distance cables systems can be modeled as the interference systems despite the facts that they are generated by the same 

sources. In some cases interference systems are positively utilized for communications in order to increase the channel 

capacity. A classic example is reuses of orthogonal polarizations of radio waves that can readily double the channel capacity. 

Other examples are CDMA (Code-Division-Multiple Access) that can efficiently reuse frequency resources and MIMO 

(Multiple-Input-Multiple-Output) that can efficiently reuse the space resources. In some cases the interferences signals come 

from hostile sources as in military applications. Those versatile interferences systems can be analyzed by a signal space theory 

in a unified form.  

The signal space is a multi-dimensional Hilbert space formed by signals originating from independent sources. Signals from 

different sources are uncorrelated and form orthogonal bases of the signal space. As the receive signals are combinations of 

signals from a number of different sources, they can be represented by vectors in the signal space. Then the interferences 

systems can be statically expressed as vectors in the signal space, thus a simple and unified analysis of varieties of 

communication networks becomes possible. It is important to discriminate originality and orthogonality of signals. Signals 

from different sources are uncorrelated, that is, they are inherently mutually orthogonal. In interferences cancellation systems a 

number of auxiliary receivers are equipped in addition to the main receiver. The correlations measurements among the receive 

paths signals give a correlation matrix which is an Hermie matrix that can be orthogonalized by eigen values & vectors 

methods. Thus we can recover the orthogonality of the receive paths signals. However, it is apparent that the originality of the 

desired signal is not recovered because the main and auxiliary paths signals are combinations of the original signals from 

different sources. The objective of communication networks is recovery of original signals, hence recovery of orthogonality of 

the receive paths signals can not achieve the objective of the communications networks.    .  
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1. Signals and Signal Space 
Fourier Transform; 
A time signal s(t) can be also expressed on frequency axis 
by the Fourier transform. 
    S(jω) = [-∞,+∞]∫s(t)・e^(-jωt)・dt 
The inverse transform is 
    s(t) =1/ (2π) [-∞,+∞]∫S(jω)・e^(jωt)・dω 
where ω is the angular frequency and j the imaginary 
number unit; j・j = -1. 
In general the signal s(t) can be a complex function of t.  
 
Inner Product or Correlation; 
Suppose we have two signals s1(t) and s2(t). Then we can 
define the inner product of those signals; 
   (s1(t), s2 (t) ) =  [-∞,+∞]∫s1(t)・s2*(t) dt 
Where s2(t)* means the complex conjugate of s2(t) 
The inner product can also be defined on the frequency 
axis;  
  (S1(jω), S2(jω))  
     = 1/ (2π) [-∞,+∞]∫S1(ω)・S2(ω)*・dω 
It can be shown the above inner products are identical; 
   (s1(t), s2 (t) ) =  (S1(jω), S2(jω)) 
The above inner products are also called correlation of 
the signals s1(t) and s2(t).   
 
Power of signals;  
The self correlation of a signal s(t) is physically the 
power of the signal; 
   (s(t), s(t)) = [-∞,+∞]∫|s(t)|^2 dt 
           =1/ (2π) [-∞,+∞]∫|S(jω)|^2・dω 
           = (S(jω), S(jω) ) = || S(jω)||^2 
where || S(jω)|| is called the norm of the signal S(jω). 
|S(jω)| means the absolute value of S(jω).  
 
Schwarz inequality;  
Suppose we have two signals x(t) and y(t) and their 
Fourier Transforms X(jω) and Y(jω). Then Schwarz 
inequality states; 
  | (X(jω), Y(jω))| = or < ||X(jω)||・||Y(jω)||   
 
Likelihood or Angles Between Signals in Signal Space; 
The correlation or inner product between two signals X 
and Y can be expressed as follows; 

   (X, Y) / (||X||･||Y||) = cos (θ)・e^(jφ) 
where θis the angle between vectors X and Y in the 
Signal Space and φ is the phase of the complex value 
(X,Y). 
The amplitude of the above formula;     
   cos (θ) = | (X, Y)∣ / (∥X||･||Y||) |  
is also called the likelihood of signals X and Y. 
For θ = 0, the signals are identical; X = Y or totally 
correlated. 
For θ= π/2,  cos (θ) = | (X, Y)∣ / (||X||･||Y||) | = 0, 
the signals X and Y are totally uncorrelated or mutually 
orthogonal in the Signal Space. 
 
Signal Space; 
Suppose we have signals S1, S2, ,,, Sm from different 
sources. Then they form a signal space with each signal 
giving the bases of the space. Without loss of generality, 
we can normalize their amplitude to 1. ||Si||=1 for all i. 
Here we define originality and orthogonally of the 
signals. If two signals S1 and S2 are generated from 
different sources, then they are original and mutually 
orthogonal.   
The inverse is not necessarily true. For example if we 
have two signals X and Y;  
   X = S1 + a・S2 and Y = b・S1 + S2,  
then 
   (X, Y) = b* + a = 0  (if a = -b*)  
The signals X and Y can be mutually orthogonal despite 
the fact they are not original signals from separate 
sources. 
The above signal space is a Hilbert space where the inner 
product is defined. 
It is also a vector space spanned by the original signals 
{Si ; i = 1,2,3,,,,m}. 
Any signal in the communication system is a combination 
of those signals originating from different sources. 
Suppose 
   X = x1・S1 + x2・S2 + ,,, xm・Sm 
   Y = y1・S1 + y2・S2 + ,,, ym・Sm 
Then 
   (X,Y) = x1・y1* + x2・y2* +,,,,, xm・ym* 
Thus the signals X and Y can be expressed as vectors in 
the signal space; 
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   X = ( x1,  x2,  x3, ,,,,, xm) 
   Y = (y1,  y2,   y3 ,,,,, ym) 
The signal space concepts were proposed in 1970s and 
applied to analyses of inter-symbols and other 
interferences problems [3], [4].  
 
2. Interference cancellation system 
Suppose we have a desired signal Sd to receive and 
regenerate for communication. There are also other 
signals S1,S2,,,,Sm generated by different sources that 
leak into the receive circuit. In order to cancel those 
interferences, we set a number of auxiliary receivers. Let 
us denote the main receiver by X that is to receive the 
desired signal Sd, and the auxiliary receivers Y1,Y2,,,Yn 
to receive the interferences signals. 
The main path and auxiliary paths signals are 
combinations of those signals; 
  X = Sd     +  I1･S1 + I2・S2  +,,,,+ Im・Sm 
  Yi = Di・Sd + Li1・S1+Li2・S2 +,,,, + Lim・Sm  
     (i = 1,2,,,,,n) 
where Sd and {Sj ; j = 1,2,,,m} are original signals. 
Without loss of generality we assume the norms of 
original signals are normalized: ||S||=1. 
The {Ii, Lij: i=1,2,,,n, j=1,2,,,,m} are transmit coefficients 
of the communication paths. 
 
Least Mean Square Error Method (LMSE) 
In order to cancel the interference signals, we subtract a 
combination of the auxiliary paths signals with adaptive 
weights to get the compensated signal Z. 
  Z = X – [i=1,n]∑Wi・Yi 
where {Wi; I = 1,2,,,,n} are the adaptive weights.     
We assume the power of signal Z will be minimal when 
the intended interferences cancellation is achieved. We 
control the weights Wi (I = 1,2,,,,n) to minimize ||Z||^2. 
To do that we set the partial derivatives of ||Z||^2 by Wi*. 
    ∂||Z||^2 /∂Wi* = 0 
Then we get; 
    (Z, Yi) = 0  ( i = 1,2,,,,n) 
That is, the output signal must be orthogonal to all the 
auxiliary paths signals. 
 
The weights {Wi} can be derived from the equation. 

     [k=1,n]∑(Yk, Yi)・Wk = (X, Yi) 
        (i = 1,2,,,,n) 
The equations can be expressed more simply; 
   [(Yk,Yi)]・[Wk> = [(X,Yi)>   (k, i = 1,2,,,, n) 
where [(Yk,Yi)] is an n x n matrix with (Yk,Yi) as its (k,i) 
elements and [Wk> a column (vertical) vector with Wk as 
the k-th element. 
Note the [(Yk,Yi)] is an Hermite matrix; 
   [(Yk,Yi)] = [(Yi,Yk)]* 
 
3.  Signal Space Analysis of LMSE Operations 
We will now deal with the simplest case where we have 
only a desired signal Sd and an interference signal S1. 
   X  =    Sd      + I・S1 
   Y  =  D・Sd     + L・S1 
Then the canceller output 
   Z = X – W・Y 
     = (1- W・D)Sd  + ( I – W・L)・S1 
From  ( Z, Y) = 0, 
we get  
   W = ( D* + L*・I )  /  ( |D|^2 + |L|^2 )  
where we used ||Sd||^2 = ||S1||^2 = 1. 
And the output is 
   Z = A・( L*・Sd – D*・S1) 
where  A = (L - D・I )  /  ( |D|^2 + |L|^2 ) 
 
Let us denote the Signal-to-Interference Power Ratios 
(SIR) of the main, auxiliary and the output signals as 
   SIX = ||Sd||^2  /  || I・S1||^2      =  1  /  | I |^2 
   SIY = || L・S1||^2  /  || D・Sd||^2  = | L|^2 / | D|^2 
Note the objective of the auxiliary path is to collect the 
replica of the interference signal S1, hence it is the 
desired signal for the path. 
Then the SIR of the resultant output Z is 
   SIZ = || L*・Sd||^2  /  ||D*・S1||^2 = | L|^2 / | D|^2 
An interesting fact is 
   SIZ = SIY 
regardless of the main path signal SIX. 
Since the main path antenna is usually larger than that of 
the auxiliary path with greater directivity, the above fact 
means the LMSE processing will rather degrade than 
improve the SIR performances of the system. 
This adverse effect was first reported by Widrow, et.al [1] 
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as a surprise in 1973. 
  
The above adverse effect can be clearly understood by the 
signal space theory as follows.  
 
 
 
,    
 
 
 
 
 
 
 
 
 
 
 

 
The signal space is defined by unit vectors Sd and S1 
which are mutually orthogonal because they come from 
different origins.  
Since Z must be orthogonal to Y, the angles in the above 
figure are equal θY =θZ. 
Those angles are related with the SIR of the signals by 
the formula; 
   tan^2(θY) = 1 / SIY  
Since θY =θZ, hence SIZ = SIY. 
  
4. Angles between Signal Subspaces 
As the output Z must be orthogonal to all auxiliary path 
signals {Yi} it must be orthogonal to the subspace 
spanned by those auxiliary paths signals.   
We start with a simple 3-dimensional signal space.   
   Y1 = D1・Sd + L11・S1 + L12・S2 
   Y2 = D2・Sd + L21・S1 + L22・S2 
The angles θ1, θ2 of Y1,Y2 against S1-S2 plane are 
   tan^2(θ1) = |D1|^2  /  (|L11|^2 + |L12|^2) 
   tan^2(θ2) = |D2|^2  /  (|L21|^2 + |L22|^2) 
The subspace Y is spanned by Y1 and Y2 by a linear 
combination. 
   Y = α･Y1 + β・Y2 

where α and β are complex variables.  
The angle θY of the Y plane against S1-S2 plane is 
defined as the maximum of the angle of the vector Y with 
variable coefficients αand β. 
In the special case where L12 = L21 = 0 the following 
formula is derived by direct calculation. 
   tan^2(θY) = tan^2(θ1) + tan^2(θ2) 
In the more general case L12 and L21 are non-zero, it can 
be shown also by direct calculation. 
  tan^2(θY)  
= ( | D1. L21 - D2. L11 |^2 + | D1. L22 – D2.L12 |^2 ) 
  /  | L11.L22 – L12. L21| ^2 
Note that it is absolute square sum of the solution of the 
equation. 
   [L].[x> = [D> 
Let the solution <x] = (x1, x2), where <x] is the row 
vector associated with the column vector[x>. 
Then     
   tan^2(θY) = ｜x1｜^2  + ｜x2｜^2 
The formula can be interpreted as follows; 
   The signals Y1 and Y2 can be expressed in a vector 
and matrix form as,   
   [Y> = [D>.Sd + [L].[SI> 
where <Y] = (Y1,Y2), <D]= (D1,D2) and 
 [L] = ( [L1>,[L2>],  
where <L1]= (L11, L21), and <L2]= ( L12, L22) 
Then the above formula is equivalent to the following 
orthogonalization of bases S1- S2 plane. 
   [L^][Y> = [L^].[D> Sd  +  [SI> 
where [L^] is the inverse matrix of [L].  
And <SI] = (S1, S2) are bases vectors of the SI subspace. 
 
The above analysis can readily be generalized to multi 
dimensional cases where we have (m+1) original signals ; 
Sd, S1,S2,,,,Sm.     
 
In more general cases where the above orthogonalization 
is not possible (ex. the number of original signals m is 
larger than the number of the auxiliary paths n or there is 
no inverse matrix for [L]) , the following theorem holds.   
 
The subspace spanned by vectors Y1 and Y2 each with 
angles θ1 and θ2 against SI subspace ( S1,S2 ,,,Sm)  
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toward base Sd  
is separated from the SI subspace by the angle θY: 
   tan^2(θY) > or =  tan^2(θ1) + tan^2(θ1)    
the equality holds if the SI subspace components of Y1 
and Y2 are mutually orthogonal. 
It can be readily generalized to multi-dimensional cases.  
 
The above formula can be also rewritten in terms of SIR;   
   SIZ = SIY = or < (SIY1^-1 + SIY2^-1 )^-1 
The above inequality tells the SIR of the LMSE output 
always degrades as the number of the auxiliary paths 
increases. If the number of the auxiliary paths exceeds the 
number of the original signals, then the Y- subspace 
reaches the whole signal space (Sd, S1, S2,-,,, Sm). Then 
the output Z must be trivially zero as it must be 
orthogonal to the whole signal space. 
 
5. Methods to Improve LMSE Algorithm 
The above analysis tells that the problem is caused by the 
leakage of the very desired signal Sd into the auxiliary 
paths. Considering this facts a number of methods were 
developed to improve the performance of LMSE 
algorithm.  
An immediate solution is to get replicas of the 
interferences while there is no desired signal [7]. 
In echo cancellation system the replica of the interference 
signal is readily available because the interference is its 
own transmit signal reflected at the far end of the long 
haul transmission lines [6]. 
 
Decision Feedback Method 
In digital communications the desired signal can be 
regenerated at the receiver with a good likelihood if the 
SIR is sufficiently high. Then the regenerated desired 
signal replica can be used to remove the desired signal 
component before the correlation measurement in order 
to eliminate the effect of the desired signal Sd. The 
method is called decision-feedback, has been widely 
used in digital communications [2][3][5]. 
We analyze a simple case where we have only the desired 
signal Sd and an interference signal S1.   
   X  =    Sd      + I・S1 
   Y  =  D・Sd     + L・S1 

Then the canceller output 
   Z = X – W・Y 
     = (1- W・D)Sd  + ( I – W・L)・S1 
From Z we regenerate a replica of the desired signal Sd’ 
and subtract it from Z. 
Let  
   Sd – Sd’ = ε. Sd     (｜ε｜<< 1 ) 
We apply an LMSE operation to Z by Sd’; 
   Z’ = Z – V・Sd’ 
And  
   (Z’, Sd’) = 0, 
Then we get 
   Z’ = (1- W・D)εSd  + ( I – W・L)・S1 
Now the correlation measurement is made between Z’ 
and Y to control the coefficient W. 
   ( Z’, Y) = 0 
which gives; 
    W = ( εD* + L*・I )  /  (ε|D|^2 + |L|^2 )  
    Z = A’・( L*・Sd − εD*・S1) 
where  A’ = ( D・I – L )  /  ( ε|D|^2 + |L|^2 ) 
The SIR of the output Z is 
   SIZ = ∥L*・Sd∥^2 /∥εD*・S1∥^2 

       = ∣L∣^2 / ∣εD ∣^2 

       = SIY / ∣ε∣^2 
If εis small, then the resultant SIR is greatly improved. 
 
The above analysis shows the regeneration of the desired 
signal and removal of it before the correlation 
measurement and control of the coefficient W is 
equivalent to reduction of the desired signal leakage into 
the auxiliary path signals. 
   Z’ = (1- W・D)εSd  + ( I – W・L)・S1 
   Y  =  D・Sd       + L・S1 
Let  
   Y’ =  εD・Sd       + L・S1 
Then 
   (Z’, Y) = (Z, Y’)      （εreal） 
Practically εis close to BER (Bit Error Rate) which is 
very small in normal operations. 
 
Hard Limiter Method 
A replica of the desired signal can be also regenerated by 
a hard limiter if the SIR of the signal Z is sufficiently 
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high [8]. Then the above method can be applied to 
improve the performance of the LMSE operations. 
The feature of the hard limiting method is its applicability 
to wide ranges of communications.  
 
6. Applications to MIMO Communication Links 
The multiple-input-multiple-output (MIMO) systems are 
normally processed in antenna levels. The LMSE method 
can realize a MIIMO system processed in IF or baseband 
by digital signal processing (DSP). 
In a MIMO system the signals S1,S2,,,,Sm are all desired 
signals and we have the same number of receive paths; 
   Yi = [j = 1, m]∑Lij・Sj 
    (i = 1,2,,,, m) 
For each Yi we do the following processing 
    Zi = Yi - [j=1,m except for i] ∑Wij・Yj 
From Zi we regenerate a replica Si’of the desired signal 
Si and remove it from Zi to get Zi’. Then the correlation 
measurement is made between Zi’and Yj (excluding i) to 
control the coefficients Wij. 
The resultant SIR of Zi will be 
   SIZi = 1/∣εi・tan(θi’)∣^2 
Whereθi’is the angle of the subspace spanned by  
{Yj ; j = 1,2,,,, m except for i} against the basis subspace 
spanned by {Sj ; j = 1,2,,,, m except for i}.  
Theεi is the relative error in regeneration of the signal 
Si; Si’- Si = εi. Si. 
 

 
7. Conclusion   
The standard LMSE method that simply minimizes the 
power of the desired path subtracted by the auxiliary 
paths signals with adaptive weights can not achieve 
interference cancellation because the achieved SIR of the 
output is equal to or smaller than the inverse of the sum 
of the inverse SIRs of the auxiliary paths. 
The problem can be clearly understood analyzing the 
function in the signal space spanned by the desired signal 
Sd and the interfering signals S1,S2,,,,Sm.  
The element signals from different origins are un-
correlated, or mutually orthogonal in the signal space.  
A group of signals mutually orthogonal do not necessary 
mean they are the original signals. In fact the LMSE 

method achieves the output signal orthogonal to all 
auxiliary paths signals but its SIR is at most equal to that 
of the auxiliary paths which are in practice worse than 
that of the main path. 
The signal space analysis of the LMSE method can 
clearly show the mechanism how the decision feed-back 
methods can improve the LMSE performances. The key 
factor is the regeneration of the original desired signal 
which is in essence the objective of the communication 
and elimination of it from LMSE measurement & control 
operations. Note a priori knowledge about the signal used 
for the communication plays the essential part in the 
improvement of the LMSE algorithm. 
The improved LMSE method can be extensively applied 
to MIMO system implemented in IF or baseband utilizing 
DSP (Digital Signal Processing).     
 .    
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