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あらまし   

学校で教わる電磁気学は J.C.Maxwell が 1864 年に発表した 6 個の方程式を基礎としている。更に基礎的な法則として磁界の中

を運動する荷電粒子に働く Lorentz 力がある。それは磁界 B の中を速度 v で運動する粒子にはベクトル積 v x B で表される電界

が生じる事を意味する。Maxwell の方程式と Lorentz 電界は共に電磁気学の基礎として適宜応用されるが、両者の関係について

は解説される事が少ないようである。他方 1905 年に A.Einstein が発表した論文「運動体の電気力学」において Lorents 電界は相

対性原理に基づく形で自然に導出された。即ち Lorentz 電界とは相対論的な現象であったのである。但しその電界はβ.v x B で

表される。ここでβ=√(1- (v/c)^2 )である。v は静止系に対する移動系の速度、c は光速である。即ち Lorentz 電界は相対論的な

現象であり、通常の形式は v/c << 1 の場合に当たる近似的なものではないのかという疑問を筆者は持ってきた。その疑問は

Maxwell の方程式から直接 Lorentz 電界を導く事と相対性理論の学習により氷解したので報告する。 
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Abstract 

The electromagnetism taught at schools is usually based on the six equations published by J.C. Maxwell in 1864. There 

is another basic electromagnetic phenomenon called Lorentz’ force, which states that to a moving particle at velocity v in 

a magnetic field B feels an electric field expressed by the vector product v x B. The two theories are applied properly to 

practical problems but their mutual relations seem rarely presented.  

On the other hand the Lorentz’ force was derived quite naturally in the paper “On electric dynamics of moving bodies” 

by A.Einsten in 1905 based on the relativity principle. However, the given formula isβ.v x B, whereβ=√(1- (v/c)^2 ). 

v is the velocity of the moving particle, c is the speed of the light in vacuum. The author understood the Lorentz’s field is 

a relativistic phenomenon but had the doubt that the usual expression is only approximate that holds only for v/c << 1. 

The doubt is now cleared by deriving Lorentz formula from Maxwell’s equations directly and further study of the 

relativistic theory as herein reported. 
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1. Maxwell’s fundamental equations 

The theoretical basis of electromagnetism was established by 

Maxwell’s equations in 1864. In the following equations E, H are 

respectively Electric field and Magnetic field vectors as functions 

of space and time. 

∇x H = J + ӘD/Әt                      (1-1)    

∇x E = - ӘB/Әt                       (1-2) 

∇・B = 0                              (1-3) 

∇・D = ρ                             (1-4) 

where 

B = μ・H                            (1-5) 

D = ε・E                            (1-6) 

J is Electric current density, B,D are respectively Magnetic flux 

density and Electric flux density vectors. μ、εare each magnetic 

permeability and dielectric permittivity which are constants in the 

isotropic media as treated in this paper. 

ρ is electric charge density and is a scalar.  

∇ is vector space differential operator ; 

   ∇= iӘ/Әx + jӘ/Әy+ kӘ/Әz                   (1-7) 

Where i, j, k are unit vectors in (x, y, z) directions. 

 

Eq(1-1) is Ampere’s law that tells how electric currents generate 

magnetic field. ӘD/Әt has a similar property as electric current 

hence called Displacement current. 

 

Eq(1-2) is Faraday’s Electro-magnetic induction law that tells how 

time change of magnetic flux density B generates electric field. 

 

Eq(1.4) is Gauss’ law that tells about the relation between the 

electric field and charges.  

Eq(1.3) tells there is no magnetic charge. 

 

2.  Lorentz’s force 

In addition to the Maxwell equations there is a basic term called 

Lorentz’s force..   

In an electric field E and magnetic field B, a particle with electric 

charge q and moving at velocity v is affected with the force f  

 f = q.(E + v×B)  

The above equation tells that the vector product v×B is equivalent 

to the electric field. A fundamental derivation of the formula was 

achieved by A. Einstein in his paper titled “Electrodynamics of 

moving bodies”.[1] Einstein named it electro-motive force that a 

moving body running in a magnetic field feels an electric field. 

 

In this section we will try to derive Lorentz’s formula from 

Maxwell equations. 

 

Suppose we have an electric charge q moving at velocity v in a  

magnetic field B.  

We will time integrate the equation of electro-magnetic induction;   

∫∇× E dt = - B 

then 

q.v×B = - q∫v×(∇× E) dt  

= q∫[ (v.∇) E  - ∇(v. E) ] dt 

      = ∫[ (v.∇) f  - ∇(v. f) ] dt 

Where f = q.E  is the force the electric field applies on the 

electrical charge. 

 

On the other hand the force can be expressed mechanically with m; 

the mass of the particle. 

f = q.E = m . Әv/Әt 

then 

(v.∇) f = m.(v.∇) Әv/Әt = 0  

 

Let us now look at ∇(v. f). The part (v. f) is the rate of mechanical 

work, hence its time integration is the work or energy. 

There is no loss of energy in the vacuum, hence it must be stored to 

form a potential φ. 

 

In summary, 

   q.(v× B) = - ∇φ 

that is,   q.(v×B) is a force given by gradient of a potential. 

Thus v×B is an electric field generated by the magnetic field to a 

moving body. 

  

Example1 



 

  

 

 

Suppose a particle with mass m electrically charged with q comes 

into a uniform magnetic field B with velocity v.  The Lorentz 

force q.(v×B) is perpendicular to both  B and v. Thus the particle 

moves in a circular mode around a central point, equivalent to a 

movement caused by a centripetal force. This is applied to 

cyclotron to accelerate charged particles. 

 

Let r be the radius of the circle. The centripetal and centrifugal 

forces balance;    

  m.v^2/r = q.v. B 

The radius r is; 

 r = (m.v) / (q.B) 

The circular motion is equivalent to one where the centripetal force 

is provided by an electrical charge q’ fixed at a point; 

-(q.q’) /(r^2) = q.v. B 

Thus 

q’ = -(m.v / q)^2 / B 

The equivalent potential is; 

φ= q’ / r 

 

Example 2 

Let us study the case a rectangular shaped conductor is placed in a 

uniform magnetic field B. The conductor rectangle can 

mechanically turn around the axis as depicted in the following 

figure. 

.  

 

Solution by Lorentz’s field 

The upper side of the rectangle generates Lorentz field E as shown 

in the figure and the lower side in the opposite direction. By 

integration of the field along the conductor, one gets the voltage V 

at the terminal 

∫E ds = v.B.2L.sin(θ) 

Where 2L is the length of the conductor and θ is the angle 

between  v and B. 

Let r be the radius of the above rotator and  ω be angular 

velocity. 

Since    v =  r.ω 

then 

    V =  2r.ω.B.L.sin(θ)    (θ=ω.t   t ;time) 

 

Solution by Faraday’s electromagnetic induction 

The basic equation 

∇x E = - ӘB/Әt 

is surface integrated; 

∫∇x E dS  = - ∫ӘB/Әt dS 

             = - [Ә/Әt] ∫B dS 

             = - [Ә/Әt]2rL.cos(θ) 

The left side by Stokes’ theorem terns to the line integral; 

∫∇x E dS = ∫E dl = -V 

Therefore 

    V =  [Ә/Әt]2rLcos(θ) 

          =  2r.ω.B.L.sin(θ) 

 

Examination of the examples 

Example 2 can be analyzed by either Lorentz’s or Faraday’s 

methods to give the same result.  The rotator works as a dynamo if 

it is mechanically turned by external torque, or it works as a motor 

if the voltage V is externally applied to give the current that then 

generates the torque based on Lorentz’ force.   

Example 1 is not so clear. The point charge moves in a circle. If the 

circle is small and the magnetic field B is sufficiently uniform, then 

its time derivative must be zero hence no electrical field be 

generated by electromagnetic induction, apparently contradictory to 

the facts. 

 

 



 

  

 

 

3.  Special Relativity theory 

Another derivation of Lorentz’s field is obtained by special theory 

of relativity[1] presented by A. Einstein in 1905. 

   

3-1   Special relativity theory of moving bodies 

 

Principle of constant speed of light in vacuum 

The theory is based on the experimental fact the speed of light in 

vacuum is constant regardless of the movement of the observers;  

c = 3 x 10^8(m/s).. 

This is hard to grasp by particle images of light, but 

understandable by the wave theory of the light. According to 

Maxwell’s theory the speed of light is given by 

c= 1/√(ε.μ) 

The dielectric permittivity ε and the magnetic permeability μ 

in the vacuum must remain the same regardless of the movement of 

the observer hence so be the speed of light. 

 

Galilei  Ttransformation 

Suppose we have two observing systems K and k where k is 

moving against K at a constant speed v in the x direction. 

Let us express the time and space coordinate of the point in system 

K and k by (t , x) and (τ,ξ). 

The classical Galilei transformation is; 

ξ = x – v.t 

τ = t 

This is quite natural in daily life where the time and space are 

mutually independent. However, a body moving in k at speed w 

will be observed in K as moving at v + w which can exceed c, thus 

contradicts to the fact. 

 

Lorentz Transformation 

In order to meet the principle of constancy of the speed of light, 

the time-space coordinates of the point (t, x, y, z) in K and 

 (τ , ξ , η , ζ ) in k must follow the following  Lorentz 

Transformation; 

    ξ= β.(x –v.t)                      (3.1-1) 

        τ = β. (t – v/c^2.x )                      (3.1-2) 

η= y                                (3.1-3) 

ζ= z                                (3.1-4) 

where  

    β= 1/√(1 - (v/c)^2)                    (3.1-5) 

 

Relativity principle 

The reverse transformation must be obtained by replacing v with 

–v; 

x = β.( ξ + v. τ)                  (3.1-1)’ 

        t = β.( τ + v/c^2. ξ)               (3.1-2)’ 

y = η                              (3.1-3)’ 

z =  ζ                             (3.1-4)’                            

 

Four dimensional continum 

In the static coordinate system the time t and space (x, y, z) are 

independent but in the moving system observed from the static 

system the timeτand space ( ξ, η, ζ) are not independent but form 

a four dimensional continuum  (τ, ξ, η, ζ). 

 

Slower flow of time in moving bodies 

A clock placed at the origin of the moving system k; ξ= 0 shows 

the time; 

  τ= 1/β.t = √(1 - (v/c)^2) t 

 

longitudinal Shrinkage of moving bodies 

The difference between two points (τ1, ξ1) and (τ2, ξ2) in 

the moving system k observed from the static system K is; 

  x2 –  x1  = β .{ (ξ 2 –ξ 1) + v. (τ 2 - τ 1) }                             

For τ2 - τ1 = 0 , 

ξ2 –ξ1 = 1/β. (x2 – x1)  

= √(1 - (v/c)^2) . (x2 - x1) 

Thus occurs shrinkage of bodies in the direction of movement. 

Note a body is defined as a system where the time flows uniformly.  

 

Quantities conserved in different coordinate systems 

The following quantities are conserved between systems k and K.;  

 (c.t)^2 – ( x^2 + y^2 + z^2)  =  (c.τ)^2 – (ξ^2 +η^2 +ζ^2) 

    (In static system K)       (in moving system k) 



 

  

 

 

In differential form; 

Suppose the above equation holds for small coordinate changes;  

  t  t+Δt,  x x+ Δx,  y y+ Δy,  z z+ Δz,等 

Then the following differential forms of conservation holds. 

 (c.Δt)^2  –  {(Δx)^2  +  (Δy)^2  +  (Δz)^2}   

=  (c.Δτ)^2 –  {(Δξ)^2  +  (Δη)^2  + (Δζ)^2) } 

 

3.2   Electrodynamics of moving bodies 

The Maxwell’s equations are expressed in the static coordinate 

system K (t, x, y, z). The electric field vector E has components  

(Ex, Ey, Ez)  in  (x, y, z) directions. 

Likewise for D, B, H, etc. 

 

Relativity principle in vacuum 

Let us express the electric field vector as  

E’ = (Eξ’,  Eη’,  Eζ’) 

and differential operator as;  

  ∇’=  iӘ/Әξ  +  jӘ/Әη +  kӘ/Әζ 

in the moving system k (τ, ξ, η, ζ). 

 

By the relativity principle the same form of equations must hold 

in the moving system k as in the static system K.; 

∇’x H’  =  J’ + ӘD’/Әτ                      (3.2-1)                                        

∇’x E’  =  - ӘB’/Әτ                        (3.2-2) 

∇’・B’ =  0                                (3.2-3) 

∇’・D’ = ρ’                               (3.2-4) 

 

Transformation of electromagnetism in vacuum 

In vacuum, 

  J = 0,   ρ= 0                             (3.2-5) 

The relativity principle tells the following relationship must hold.  

    Eξ’ = Ex                             (3.2-6) 

        Eη’ = β(Ey – v.Bz)                      (3.2-7) 

        E’ζ= β(Ez + v.By)                      (3.2-8) 

        

        B’ξ =  Bx                            (3.2-9) 

        B’η = β(By + v/c^2.Ez)                  (3.2-10) 

        B’ζ= β(Bz -  v/c^2.Ey)                 (3.2-11) 

The equations tell 

(1) The longitudinal field components (in direction of the 

movement ) are unchanged, 

(2) The transversal components (in perpendicular to the movement 

direction ) have the following relationship 

E’t  = β. (Et  +  v x Bt ) 

Namely, except for the coefficient β= 1/√(1 – (v/c)^2 ), it gives 

the Lorentz field as the vector product of v and B. Thus we can say 

the Lorentz field is a relativistic phenomenom. 

Furthermore for the magnetic field;  

    B’t =β. (Bt – v x Et / c^2 ) 

 

In conclusion, 

(3) The field components remain the same in the longitudinal 

direction but the transversal components are combined by a sort of 

Lorentz transformation. Thus electric and magnetic fields are not 

independent hence must be treated as combined electromagnetism. 

 

3.3   Movements of electron in electromagnetic field 

In the moving system k attached to an electron the following 

equations of motion must hold;   

   m. [(d/dτ)^2]ξ = e. Eξ’= e.Ex 

      m. [(d/dτ)^2 ]η  = e. Eη’ = e.β.(Ey – v.Bz)    

m. [(d/dτ)^2 ]ζ  = e. Eζ’ = e.β.(Ez + v.By) 

where “m “ is the mass and “e” the electric charge of the electron. 

What do we observe this from the static field K? 

 

Local time of the electron 

The motion of the electron is not generally constant velocity linear 

movement but follows a bent curve, Therefore we must use the 

conserved quantity in differential form; 

     (c.Δt)^2  –  {(Δx)^2  +  (Δy)^2  +  (Δz)^2}   

=  (c.Δτ)^2 –  {(Δξ)^2  +  (Δη)^2  + (Δζ)^2) } 

Since the electron is always at the origin of system k; 

 (Δξ)^2  +  (Δη)^2  + (Δζ)^2  = 0 

then 

   dτ/ dt = √(1 – (v/c)^2 ) 



 

  

 

 

= √(1 – (dr/dt/c)^2 ) 

= 1/β 

where 

  v = dr/dt 

    r = ( x, y, z ) 

The “τ” is the local time of the moving electron. 

 

Equations of the motion observed from static system K 

For the longitudinal direction both time and space shrink by the 

same rate hence 

   dξ/dτ = dx/dt 

therefore 

[(d/dτ)^2]ξ=  [d/dτ][dx/dt] 

            = [d/dt][dx/dt]. [dt/dτ] 

      =β. [(d/dt)^2]x 

For the transversal components; 

   [(d/dτ)^2 ]η = β^2. [(d/dt)^2 ]y    

[(d/dτ)^2 ]ζ = β^2. [(d/dt)^2 ]z 

 

Thus we ge the equations of motion observed in static system K; 

m.β,[(d/dt)^2]x  =   e.Ex 

    m.β, [(d/dt)^2 ]y =  e.(Ey – v.Bz)    

m.β.[(d/dt)^2 ]z  =  e.(Ez + v.By) 

 

3.4. Relativistic momentum and mass 

The above analysis tells 

(1) The forces applied to the electron are the usual electrical and 

Lorentz’ field forces.   

(2) The mass increases by the rate β= 1/√(1 – (v/c)^2 ) where v 

is the speed of the electron observed in static system K. 

(3) The relativistic mass is experimentally proven and gives a 

direct ground why no matter can reach the speed of light. 

 

Relativistic energy 

Since x is no special direction we will use r = (x, y, z) to represent 

the location of the electron.  

dr/dt  = (dr/dτ).(dτ/dt)  

= (dr/dτ).√( 1 – ((dr/dt)/c)^2  ) 

=(dr/dτ) / √(1 + ((dr/dτ)/c)^2 ) 

On the other hand 

dτ/dt  = √(1 – ((dr/dt)/c)^2 ) 

       = 1/ √(1 + ((dr/dτ)/c)^2 ) 

Therefore 

   m.c^2 [d/dt] (dt/dτ)] 

= m.c^2 .[d/dt]  √(1 + ((dr/dτ)/c)^2 ) 

    = (dr/dτ) / √(1 + ((dr/dτ) /c)^2 ) . m.[d/dt] (dr/dτ) 

   = dr/d t. F 

    = v.F 

where 

  F = m.[d/dt] (dr/dτ) 

      = βm. [(d/dt)^2]r 

is force. 

 

Furthermore 

   v.F = dE/dt  

is the time rate of Energy E of the moving particle. 

Thus 

   E = m.c^2.(dt/dτ) 

    = m.c^2 /√(1 – (v/c)^2 ) 

        = m.c^2 + 1/2 m.v^2         (v/c << 1) 

The first term is the static energy and the second term is the kinetic 

energy of the particle. 

The static energy tells the equivalence of mass and energy. 
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