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Abstract
The quaternion is an expansion of complex number to three dimensions of imaginary numbers. It is a useful tool in calculating
rotation of vectors around a given axis in the three dimensional space. The imaginary numbers in quaternion can be replaced
with real vectors in the three-dimensional space to give a Vector-Scalar (VS). The set of whole vector-scalars is algebraically
equivalent to that of quaternions; they form rings. The transition is made by a definition of vector-scalar product (x) as follows.
For vectors u and v, u (x) v = u x v — (u.v), where u x v and (u.v) are respectively normal vector product and scalar product.
For any vector | with unit length, 1 (x) | = -1, which is similar to the imaginary number i. In fact the following formula e*(1 6 )
=cos(0) + Lsin(6) can be defined just as Euler’s formula in complex number theory. The coefficients in VS can take
complex values to achieve a fundamental unification of vectors and complex numbers. Functions in VS domain can be defined
in much the same manners as in complex plane enabling to solve wide ranges of vectors and scalars problems.
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1. Rotation of vector in space

Let a vector r rotated around an axis e by an angle

0 to get vector r’. Here e is a unitary vector in

three dimensional space ; (e.e) = 1.

The vector r can be expressed in the following form
r=(re)e + ex(rxe) (1.1)

The first term is the axis component and the second

term is the transversal component.

The rotated vector r’ is given by;
rr=ex(rxe)cos(0)+(exr)sin(6) + (re)e
=(exr)x{e.cos(6)+sin(6)}+(re)e
(1.2)
The rotation process can be repeated to get r” from r’. But
the relation between r” and r is complicated.

2. Vector Rotation formula with Quaternion

2.1. Quaternion
A quaternion z is defined as follows;
z=a+ib+jc+ kd = (a,b,c,d)

where a,b,c,d are real numbers and i, j, k are
imaginary numbers. The operations of the imaginary
numbers are;

in2=jr2=k"2= ijk=-1

icj=-ji=k
Jrk=-k-]
kei=-i-k

[
j

In the Quaternin (a,b,c,d), a is real part and (b,c,d)
is imaginary part.

Ring
Quaternions z ,u, w have the following properties;
z.u =/= u.z ;Commutative law not held
(z.u).w = z.(uw) = z.uw ;
Associative law held

z.(utw) = z.u+z.w
(z+u).w = z.w+u.w; Distributive law held

Thus the set of whole quaternions forms a Ring.

Quaternion Conjugate

For quaternion z = a + ib + jc + kd

Its conjugate is defined as follows
z*=a-ib-jc-kd

Real part snd imaginary part

Definitions;

a= (z + z%) /2

(b, c. d) = (z - z%)/2

Real part;
Imaginary part;

Conjugate of product of quaternions
For quaternions z and w, the following holds;
(z . w)*=w*,z*

Absolute value of quaternion
The product of z and z* gives;
z.z* = a’2 + b2 + ¢cN2 + d"2
= |z]| 2

Where |z| is the absolute value of z.

2.2 Quaternion formula on rotation of vectors
In equations (1.1) and (1.2), let the axis vector e
expressed in quaternion as;
e=il+jm+kn=(0,1, mn)
where I,m,n are direction cosines for 3 coordinates.
"2+ m"2+n"2=1
Let the vectors r and r’ expressed as quaternions;
r=(0,%xy2)
rr=(0,x,y’,2)
Then the rotation of the vector r is expressed in
quaternions products as follows;
r=T.r.T*
where
T =cos(0/2)+sin(6/2).e

(2.2-1)
(2.2-2)

The equivalence of equations (1.2) and (2.2-1,2) can
be proved by direct calculation, which is fairly
cumbersome.

3. Vector-Scalar Ring

3.1. Basis vectors
The axis vector e is expressed by the directional
cosines I, m, n and the coordinate unit vectors i,j,k ;
e=1i + mj +nk
(ee)=1"2+m"2+n"2=1
The basis vectors have the following two different
kinds of products;

Scalar or Inner products;
i=01=(k k=1
(ip)=30.1)=0



(J.k)=(kj)=0
(k1) =(G.k) =0

Vector or Outer products;
ixi=jxj=kxk=0

ixXj=-jxi=k
jxk=-kxj=i
kxi=-Ixk=]j

3.2. Definitions of Vector-Scalar
For real numbers a,b, vector-scalar is defined by;
[z]=a+D.e =(a, b.l,bm, b.n)

Scalar part and vector part
In the above formula a is Scalar Part and b Vector
Part of vector-scalar [z]..

Vector-Scalar product
For vectors u, v the vector-scalar product is defined ;
u((x)vs= (u, v)
(Outer product)  (inner product)
Multiplication (x) is a simple scalar multiplication
unless both operands are vectors.

uxyv -

For the axis vector e
e(X)e=-1

Scalar and Vector products
Conversely the Scalar and Vector Products can be
defined by Vector-Scalar product.

(uv) =-{uX)v+vxXu}/2

uxv ={uxX)v - v(xX)u}/2

Equivalence of Vector-Scalar and Quaternion

The above definitions tell the whole sets of
vector-scalars and quaternions form equivalent
algebraic entity, i.e. they form Rings.

3.3 Vector conjugate
The vector conjugate of vector-scalar
[z]=a+D.e

is defined as follows:
[z]"*=a-Dh.e
Then the following product gives
[z] () [2]* = (a + be) (x) (a - be)
= a2 + b2
= [[z]]~2
Where [[z]| is the absolute value of [z].

Scalar Part and Vector Part
Definitions:
Scalar Part;
a={[z] +[z]" }2
= Sc[z]
Vector Part;
b={[z] - [2]" H(2¢e)
=Vc[z]
Where 1/e = -e, since
(17e) (x) e = -e (x) e = 1.

3.4. Vector-scalars with different axis vectors
Let axis vectors; e, f form vector-scalars [z], [w]
[z] = a + be
[w] = ¢ + df
Then
[z](x)[w] =(atbe) (x) (c+df)
=a.c—b.d.(e.f)y+b.c.e+adf+bdexf
On the other hand
[wl(x)[z] =(c+df) (x) (a+be)
=a.c—b.d.(e.f) + b.c.e +ad.f+bdfxe
Hence,
[zZ1()[w] =/= [w](x)[z]
The commutative law does not hold unless axis
vectors are identical; e = f.

Conjugate of Products of VS
{[z] (x) [w]}* = [w]* (x) [2]"

Absolute value of Products

[ [z] (x) [W]] = [[z]] - |[w]]

3.5. Polar representation of Vector-Scalar
Let a vector-scalar [x] be expressed as follows;
[X] = x0 + x
= (x0, x1, x2, x3)
Where x0 is the scalar part
and
X =x1.i + x2.j + x3.k
is the vector part.

The absolute values of vector-scalar and vector are;
I [x]] = SQR{(x0) "2 + |x| 2 }
[x] = SQR{ x172 + x272 + x372}
Then,
[X] = x0 + x
=|[x]]. {cos(0x) + sin(0x).1x}
=[[x]].e”(0 x.Ix)



where

cos(0x)= x0/|[x]]
sin(6x) = x| /|[x]]
1x = x /|x]

Proof;

Let vector scalar [T] be
[T]=cos(0) +sin(6).l

Differentiation of [T] by variable 0 gives
[d/d 6 ][T] =-sin(6) + cos (0).
=1(x) [T]
Hence
[T]=e~(10)=cos(0) +sin(0).l
3.6 Vector-Scalar representation of vector
rotation in three dimensional space

The equations (2.2-1,2) in quaternion form can be
now re-written in vector-scalar form;

{cos(0/2) +sin(0/2).e}

x) r

(x) { cos( 0 /2) +sin(0/2).e }
=eM0/2.e) (X) r (x)enr(-01/2.e)

r=

Its equivalence with equation (1-2) can be proved by
direct calculation using vector analysis.

3.7. Complex Vector-Scalar
Formulation;
VSR [z] is expressed as
[z2] =20+ z

=z0+z1l.i+2z2.j+z3.k
Where the coefficients {zn; n = 0,1,2,3 } can take
complex values in general;

zn = xn + yn.i (ir2 =-1)

where {xn} are the real parts and {yn} are imaginary
parts

Vector conjugate and complex conjugate
For VS

[2z] = 20 + z,
Vector Conjugate is defined as;

[2]Y =20 -z

On the other hand,
Complex Conjugate is defined as ;
[Z]CC - ZOcC + Z cc

= x0 + x1.i + x2.j + x3.k
-i{y0 +yl.i +y2.j+y3.k}

Products of Vector-Scalar with its vector and
complex conjugate
[z] () [2]Y*° = [z0]"2 + |z]| 2
-20.z°+z20z-zxz*
Note the scalar part is non-negative real value and
the vector part is purely imaginary;
Re{[z](x)[2]"*} = Sc{[z](x)[2]"**}
=[z01"2 + |z]| "2
Im{[z](x)[2]"*} = Ve{[z](x)[2]"**°}

=-20.2+20%z-zx2°

Norm of complex VS

Square root of the above scalar part is called the
norm of [z];

I [z]1 ]l = SQR(|z0]°2 + [z| 2 )

Polar representation of complex VS

[z2] =20 + 2
= [[ Lz I.C [z0[/ | [2]]l.20/]z0]

+ lzl/ I [z ] 2/ 1z )

= [z]||.{ cos(0z). z0/12z0] + sin(0 z).1z}
where

cos(0z)= [20]/] [z] |

sin(02)=lzl/| [z] |

lz = z/|z]

Separating the real and imaginary parts;

[z] /1 [z] |l
cos(0z). z0/|20] + sin(0z).1z
cos(0z). x0/]12z0| + sin(02).x/|z]
+i{cos(0z).y0/]z0] + sin(0z).y/|z|}
cos(0z).cos(¢p) + sin(0z).cos(W¥)1x
i.{cos(0z).sin(¢) + sin(0z). sin(¥)ly}

+

where
cos( )= x0/]z0]
sin(¢ )= y0/[z0]
cos(W)= [x[/|z]
sin(¥)= |yl/|z]
1x = x /|x|
ly =y /Iyl



4. Operations of Vector-Scalars

4.1 Ring
No commutative law does not hold ;
[X] (x) [yl =/= [y] (x) [X];
Associative law holds;
([x] (x) [y]) (%) [z] = [x] (x) ([y] (%) [2] );

Distributive law holds;

[xI (%) CLy]l + [z]) = [x] (x) [y] + [x] (x) [z]

([x] + [yl) () [z] = [x] (x) [z] + [y] (x) [z];

Thus Vector-Scalars form a ring ; VSR.

4.2. Inverse element
For Vector-Scalar [z]=20 + z
[2] (x) [2]" = (20 + z) () (20 - 2)
= 2072 + (2.2)
= [[2]] "2
Hence the inverse of [z] shall be
1/[z] = [2]"° 1 I[z]] 2
where
[[z]]= SQR( z072 + (z.2))
Note the absolute value can take complex value in
general.

For the inverse element the commutative law holds;

Ulz] (x) [2] = [z] (x) 1/[z] = 1

Especially for the case z0 = 0, the inverse of the
vector is
z=-21/(z2)

4.3. Multiplication
Let multiplication of VS [x] and [y] gives [z].
[x] (x) [yl = (x0 + x) (x) (YO +y)
= x0.y0 — (x.y) + x0.y + yO.x + X Xy
In polar forms;

[x1= Il [x]|l.e” (0 x. 1x)
= I [xJ [l. (cos(0 x) + sin(0 x).1x)
and
Iyl= I [yl ll. (cos(Oy) + sin(0y).1y)
[21= |l [z]]l.(cos(Oz) + sin(0z).1z)
Then for

[z] = [x] (x) [y]

In norms or amplitude;

Lzl = 1 ix20. I Dyl |

In phases;
cos(0z) = cos(0x).cos(0y)
- sin(0x).sin(0y). (Ix.1ly)
sin(0z).1z = cos(60x). sin(0y).ly
+ cos(0y). sin(0x).1x
+ sin(0x). sin(0y). (Ix) x (ly)
Thus we have established formulae for addition,

subtraction, multiplication and division.

5. Functions of Vector-Scalars

5.1 Powers and Roots
Powers:
In the above multiplication formula, let [x] = [y],
then
[x]~2= [ [x] [ "2
.(cos(20x) +sin(20x).1x )
= | [x]] "2.¢" (20 x.1x)

In general for integer n:

[xX]*n= | [x]] n.e (n 0x. 1x)
Roots
For VS [b]
[b] = b0 + b = [bl|.e (0b.1b)
Let [x] be
[x]"2 = [b]

Then [x] shall be square root (SQR)of [b]
| [x] 1] "2.e (20 x.1x)
= | bl .e (0 b.1b)
= [[ bl l.e”C (0b+2x).1b )
Hence
I Tx] 0= SQRCIl [b] 1)
0x =0b/2, 0b/2 +x
1x = 1b
Namely we have two roots;

[x]= +,- SQR([ [b] [|). e (0 b/2.1b)
In general we have n roots for [x] n =1.

5.2. Exponential function
For real number p
pIX] = pA(x0 + Xx)
= p~x0. en(log(p).x.Ix)
= p™x0.( cos(log(p).x) + sin(log(p).x). Ix)
where
x= |x|



Ix =x/x

For real numbers p, g
(p-a)™[x] = pIx] (%) a”[X]

On the other hand
xX1*p={Il [x]].e" (0x.1x)} p
= | Ix]]l "p .e (p. 0x. 1x)

For different [x], [vy]
(Ix] x) [y 'p =/=[x]"p x) [yl'p
p ([x1+[y]) =/=p [x] x) p Ly]

For Vector—-Scalars with different axis vectors
the exponential laws do not hold, therefore,
exponential functions cannot be well defined

For the VSs with the same axis vector, they form
a “field”

so all the functions can be well defined

as the commutative law also holds

5.3 Logarithmic functions
For VS
[x]= I [x]ll.e (0 x 1x)
= I [x]ll.e"((0x +27nn).1x)
The logarithm shall be
Log([x]) = log(l| [x][[)+ (0 x+t2xn).1x

(n; integer)

5.4 Trigonometric functions
are defined with the exponential functions.
cosh([x])= {e"[x] + e (-[x]}/2
sinh([x])= (e " [x] - e (-[x])}/2
cos(x) = (e (x.1x) + e (-x.1x) )/2
sin(x) = (e (x.1x) - e (-x.1x) )/(21x)
where
1x = x/x
1x (x) 1x = -1

Trigonometric functions of complex VSR
cosh([z]) = cosh(z0 + z)
= cosh(z0).cos(z) +1z.sinh(z0).sin(z)

sinh([z]) = sinh(z0 + z)
= sinh(z0).cos(z) +1z.cosh(z0).sin(z)

For complex [z] composed of real and imaginary
parts;
z0 = x0 + y0.1

z = x +vy.i

The unit vector 1z can be decomposed as
1z = z/2 = x/z.x/x + y/z.y/y. 1
= cos(¢).1lx + i.sin(¢).1ly

Where
z= |z| =SQR(x"2 +y"2)
Xx= |x| = SQR( x1°2 + x272 + x372)
y= |yl = SQR( y172 + y2°2 + y372 )
also

sinh(z0) = sinh(x0).cos(y0) + i.sin(y0).cosh(x0)
cosh(z0) = cosh(x0).cos(y0) + i.sin(y0).sinh(x0)

6. Equations of Vector-Scalars

Equations containing unknown VS; [x] = (x0, x1, x2,
x3) can be solved in principle by decomposing the
equations into the elements of VS. However, it is
equivalent to calculation of quaternions, which is
usually quite cumbersome.

Calculations with VSs can be made more simply and
understandably utilizing various vector analysis tools.
In addition complex VSR expands the ranges of
problems that can be handled.

6.1. Linear equations

[1] Basic equations
[a] (x) [x] = [b]
The solution is;

[x] = 1/[a] (x) [b]

[2] Linear equations with unknown Vectors
For the equation with unknown vector y and given
vectors a and b;

axy=b (6.1)
In order to form Vector-Scalar equation we set an
auxiliary equation

(a.y) = A (arbitrary number) (6.2)
Take a difference of both sides of the equations;
a(x)y=b-2

Then
y=1/a(x) (b-21)
=-ala”2 (x) ((b-21)
= bxal/a*2 + (a.b)/a”2 +( 1 /a"2).a
In order for y to be a pure vector, it must hold
(a.b) =0
The solution is;
y= bxal/ar2 + (1 /a"2).a (6.3)



Note y is also the solution of equation (6.2). In that
case A isgiven and b is an arbitrary vector.

[3] Linear equation of Vector-Scalar with right
and left side multiplications
[a] (x) [x] + [x] (x) [b] = [c]
Decomposed to components as follows
(a0+a) (x) (X0 +x) + (x0+x) (x) (b0+ b) =c0 + ¢
Furthermore
Scalar part;
(a0+b0).x0 — ((a+b).x) = cO
Vector part;
(a0+b0).x + x0.(a+b) + (a-b) Xx =¢

The second term is in the inner plane spanned by
vector a,b and the third tem gives a vector on the
transversal plane orthogonal the inner plane. We
discriminate vectors in the inner and transversal
planes by suffixes i and t as follows;

(a0+b0).x0 — ((a+b).xi) = c0

(a0+b0).xi + x0.(a+b) = ci

(a0+b0).xt + (a-b) X xi = ct
where

ct= (a+b) /|la+b| x { ¢ x (a+b)/|a+b| }

= (a-b)/la-b| x{cx (a-b)/|a-b| }
ci=c-—ct

The above equations are re-written as follows;
Let

ai=ai+bi (i=0,1,2,3)
Bi=ai-bi (i=0,1,2,3)
then
a0+x0 - (& xi)=c0
a0« Xi + X0+ « =ci
al-xt + B Xxi =ct =

The solutions are;
X= Xi + xt

¢ If a0=/=0,

X0=(a0-+c0+ a *ci) / [[a]l”2
Xi=(ci- X0+ a)/a0
xt = (¢t - BX xi) /a0

where

a=(C al, a2, «a3)
B:( B]" B2y BS)
[[a]l?2=a 072 +alr2 +a22 +a 32

¢ If «a0=0
o xi =-c¢0
X0+ @ =ci
B Xxi =ct =

If vector « = a + b does not share the same direction
as vector ci, then there is no solution.
If « and ci have the same direction, then the solution
is given as;
x0=lci| / |al
xi=(ct XB+ A -
where
A=-{(B - B) cO+ta - (ct XB)}/(a - B)
xt can be arbitrary.

B)I(B - B)

6.2. Second degree equations
[1] Basic equation
For unknown [x],
[x]*2 + [a] (x) [X] + [x] (x) [a] + [c] =0
Modified to be
{[x] + [a]}"2 = [a]"2 - [c]
Hence

[x] = -[a] +- SQR( [a]"2 - [c] )

[2] General cases

[x]*2 + [a] (x) [x] + [x] (x) [b] + [c] =0

Let

[x] = x0 + x
To modify the equations
Scalar part;

X072 + (a0+b0).x0 + ¢0 — { (x.x) + ((a+b).x) }=0
Vector part;
(2x0+a0+b0).x + x0.(a+b) + (a-b) X x+c¢=0

The third term is transversal to the inner plane
spanned by vectors a, b.
We decompose the equations into inner and
transversal planes discriminating terms with suffixes
iand t;
(2x0+a0+b0).xi + x0.(a+b) + (a-b)x xt + ci =0
(2x0+a0+b0).xt + (a-b)x xi +ct =0

Solutions;
If 2x0+a0+b0 =10
x0 = - (a0+b0)/2
xi= {BX ct+ A B} /(B.B)
xt = {BX ci+x0.8Xal}/(B.8)
where



a=a+b
B=a -b

A ; arbitrary number

If 2x0+ a0 =/= 0
xi={A.B+ B Xct - (2x0+ « 0).(x0. e + ci) }
/{(2x0+a 0)*2 + (B. B)}
xt={B X(x0.a+ ci)- (2x0+a 0).ct}
/{(2x0+a 0)*2 + (B. B)}
where

=-{x0.(a.B)+ (B.ci)} / (2x0+« 0)

x0 can be solved from the scalar part, which
has higher than 4" degrees, hence cannot be

expressed in a closed form.

Recursive solution
In concrete numerical problems it can be
solved recursively.

The equation is modified;

[a] (x) [x] = - {[x] (x) [x] + [x](x)[b] + [c]}

Then the solution is expressed as;
[x] = - 1/[a]
(x) { [x] () [x] + [x](x) [b] + [c]}

which takes a recursive format.

Let x(n) be the value in the n-th cycle,
Then,

[x(n)] = - 1/[a]l (x)

{Ix(-D] &) [x(-1)] + [x(n-1) ] (x) [b] + [c]}

The algorithm is depicted as follows.

The initial value can be any Vector—Scalar
[x(0)]. Then [x(1)] is calculated from [x(0)].
The cycle repeats checking the difference
[x(n) ]-[x(n)].

If [x(n)]-[x(n-1)] turns to 0 for n increasing,
then
achieved.
Different

different initial values.

conversion to the solution will be

solutions may be reached from

The calculation algorithm is depicted in the
following figure.

[x(n-1)] |
—> ﬁ
+
! d
) e [b]
memory ] >
[x(n)]
(x)
-1/[a]

Recursive solution circuit

method will be

applicable to wide varieties of applications

Recursive calculation
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